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ABSTRACT

WIND-3 is an application for aviation weather forecasting that uses the analog method to produce
deterministic predictions of cloud ceiling height and horizontal visibility at airports. For data, it uses
historical and current airport observations [routine aviation weather reports (METARs)], and model-based
guidance. It uses the perfect prognosis assumption as it is designed to use any model-based predictions of
wind direction and speed, temperature and humidity, and precipitation occurrence and type to specify
conditions in the 1–24-h projection period. To identify and rank analogs, according to their degree of
similarity with the present situation, it uses a fuzzy logic–based algorithm to measure similarity between past
situations, which are complete series of METARs, and current situations, which are a composite of recent
METARs and model-based guidance. It uses the retrieved analog ensemble, the set of most similar analogs,
to make predictions of ceiling and visibility in the 1–24-h projection period. WIND-3 has been tested by
being run continuously in real time for 1 yr, producing forecasts for 190 major Canadian airports. It
produces accurate forecasts, based on summaries of Heidke skill score (HSS) statistics, and compared to
two benchmarks, persistence and official aerodrome forecasts [terminal aerodrome forecasts (TAFs)].
WIND-3 predictions of instrument flight regulation (IFR) conditions in the 0–6-h period have an HSS of
0.56, and in the 7–24-h period have an HSS of about 0.40, compared to respective HSS scores for persistence
forecasts of 0.53 and less than 0.20.

1. Introduction

The safety and efficiency of air travel depends on
accurate and timely forecasts of airport weather. Pilots
use these forecasts when deciding how much reserve
fuel to load on board before takeoff. If poor weather is
forecast at a flight’s destination airport, then there is an
increased chance that the flight will have to be diverted
en route to an alternate airport. In such cases, pilots will
load on extra fuel to extend the flight range of the
airplane to reach these alternate airports.

The Meteorological Service of Canada (MSC) is re-
sponsible for providing accurate and timely weather
forecasts for 190 airports across Canada. The forecasts
describe weather conditions expected to affect flight
conditions for up to the next 24 h. These conditions
include cloud ceiling height, horizontal visibility, pre-

cipitation, and wind direction and speed. Forecasters
work to keep these forecasts as accurate and current as
possible, and will quickly revise forecasts as appropri-
ate for the current weather situation using all relevant
information. The most frequent cause for forecasts
needing to be revised is an unanticipated change in
ceiling or visibility (H. Stanski 1999, personal commu-
nication).

At every airport in Canada, large archives of past
weather observations (of variables listed in Table 1),
often stretching back several decades, contain climato-
logical information on ceiling and visibility specific to
the airport. Forecasts for the present case can be based
on similar past cases using the analog method. To take
advantage of this climatological data and the analog
method, a tool named WIND-3 has been developed
that quickly finds, summarizes, and displays the ceiling
and visibility values of past weather cases that are most
similar to the present case, i.e. analogs. The display
provides forecasters with a new form of relevant infor-
mation that helps them to improve forecast accuracy.

The work described here builds upon that of Hansen
(2000) and Riordan and Hansen (2002), in which it was
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shown that the analog method, implemented with a
fuzzy k-nearest neighbors (k-NN) algorithm, and sup-
plied with large database of in situ weather observa-
tions [routine aviation weather reports (METARs)],
can skillfully predict cloud ceiling and visibility at an
airport. Subsequently, the analog method has been
adapted into a system to provide ceiling and visibility
forecast guidance in real time for all major airports in
Canada.

The rest of this section introduces the problem of the
objective forecasting of ceiling and visibility, and de-
scribes some previously tried approaches. The second
section describes a new approach that combines the
analog method with fuzzy logic. The third section re-
ports the results. The final section lists conclusions and
recommended subjects for future work.

a. Ceiling and visibility forecasts

The Meteorological Service of Canada (2006) defines
a terminal aerodrome forecast (TAF) as follows: “the
forecaster’s best judgment of the most probable
weather conditions expected to occur at an aerodrome
together with their most probable time of occurrence. It
is designed to meet the preflight and in-flight require-
ments of flight operations. Aerodrome forecasts are in-
tended to relate to weather conditions for flight opera-

tions within 5 nautical miles of the centre of the runway
complex depending on local terrain.”

TAFs are regularly produced and issued for 190 air-
ports in Canada (Fig. 1). Forecast timings of significant
changes in flight conditions are supposed to be accurate
to within 1 h. Cloud ceiling height and horizontal vis-
ibility (defined by Glickman 2000), hereafter referred
to simply as ceiling and visibility, are the two variables
that together determine flight category [e.g., instrument
flight rules (IFR) or visual flight rules (VFR), defined
below in section 3]. Forecast flight categories at airports
are used by airlines to make operational fueling deci-
sions and are used by air traffic managers to anticipate
airport capacities (i.e., manageable rates of airplane ac-
ceptances and departures).

In addition to forecasts of ceiling and visibility, TAFs
include information about precipitation occurrence and
type, and wind direction and speed. TAFs must be
quickly revised when observed conditions differ signifi-
cantly from forecast conditions. TAFs are challenging
to produce due to the expected precision: when poor
flight conditions are forecast, ceiling height forecasts
are expected to be accurate to within 100 ft and visibil-
ity forecasts are expected to be accurate to within 1⁄4 mi;
and when significant changes of flight category are fore-
cast, the forecast time of the change is expected to be
accurate to within 1 h.

The goal of the research described here is to develop
a useful tool for operational forecasters to help them in
predicting ceiling and visibility more efficiently and
more accurately.

b. Direct model output

Operational forecasters have a number of objective
techniques to help them to forecast ceiling and visibil-
ity. Most of these techniques combine the respective

TABLE 1. Aerodrome observational data. Regular hourly obser-
vations from airports (METARs) contain six types of data de-
scribed by 12 attributes.

Type Attribute Units

Temporal Date Julian date of year
(wraps around)

Hour Time UTC
Ceiling and

visibility
Cloud amount(s) Tenths of cloud

cover (for each
layer)

Cloud ceiling
height

Height in meters of
�6/10ths cloud
cover

Visibility Horizontal visibility
in meters

Wind Wind direction Degrees from true
north

Wind speed kt
Precipitation Precipitation type None, rain, snow,

etc.
Precipitation

intensity
None, light,

moderate, heavy
Dewpoint spread

and temperature
Dewpoint

temperature
°C

Dry-bulb
temperature

°C

Pressure Pressure trend kPa h�1

FIG. 1. Locations of 190 airports for which MSC regularly issues
TAFs.
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strengths of two basic, complementary forecast tech-
niques: dynamical and statistical (e.g., Jacobs et al.
2003). Dynamical techniques (numerical models) sug-
gest probable ambient conditions related to the ceiling
and visibility over large-scale areas, whereas statistical
techniques using observations made at any specific air-
port suggest probable values of the ceiling and visibility
themselves in small-scale areas around the specific air-
port. Current numerical models are very useful for pre-
dicting conditions related to ceiling and visibility, but
are not as useful for predicting the values of ceiling and
visibility themselves for the following two reasons.

First, large-scale numerical models do not factor in or
reflect the particular details of the subgrid-scale local
airport climatology. For example, a comparison of an-
nual frequency of fog (hours of visibility of �1⁄2 mi in
fog) for several neighboring airports in Canada shows
that frequency can vary by a factor of 2 across a dis-
tance of one grid-scale unit (15 km), particularly near
coasts.

Second, dynamical model resolution, in the horizon-
tal and vertical, is currently inadequate for modeling
cloud ceiling height and horizontal visibility. For ex-
ample, in the Global Environmental Multiscale (GEM)
model, there are approximately only three model levels
below 1000-ft altitude (MetEd 2006). When ceiling
heights are forecast below 1000 ft, the goal is to forecast
them accurately to within 100 ft. The horizontal scale of
interest for aviation forecasting is 5 n mi (8 km) around
the aerodrome, which is approximately half that of the
current 15-km GEM grid scale (MetEd 2006). Vari-
ables of primary concern to aviation interests are par-
ticularly challenging to forecast with models alone,
namely very short-range precipitation rate and type,
cloud structure, and fog (Stoelinga and Warner 1999).
Models’ basic variables are wind vectors (u and �), hu-
midity, geopotential height of eta levels, and surface
pressure (to fix the surface boundary). Highly reliable
values of weather elements that affect ceiling and vis-
ibility may be obtained directly from model output
(e.g., wind speed and direction, temperature, and hu-
midity), and fairly reliable forecasts of precipitation oc-
currence and type are obtainable from models, to help
in forecasting the ceiling and visibility. However, the
ceiling and visibility themselves may only be indirectly
inferred from direct model output because for the same
ambient conditions (observed weather other than ceil-
ing and visibility) wide distributions of ceiling and vis-
ibility are often observed. All subgrid-scale physical
processes are parameterized, particularly those involv-
ing atmospheric water, which is the key factor to con-
sider in forecasting the ceiling and visibility.

c. Conditional climatology

A climatological forecast is defined as one “based
solely upon the climatological statistics for a region
rather than the dynamical implications of the current
conditions” (Glickman 2000). The climatological fore-
cast method has been applied to develop numerous sys-
tems for generating objective guidance for forecasting
ceiling and visibility (Martin 1972; Stutchbury and
Hawkes 1974; Lund and Grantham 1979; Lund and Tsi-
pouras 1982; Whiffen 1993; M. A. Purves 1997, personal
communication).

Previous implementations of the conditional clima-
tology lack relevance and specificity for specific
weather situations due to two factors. First, the previ-
ous systems were based on summaries of preselected
categories, crisply defined broad categories, and may
therefore fit poorly with the particulars of the current
weather situation. Basically, continuous numbers are
better than coarse categories for describing variables.
For example, referring to Fig. 2, if observation X rep-
resents the current situation, and observations A and B
are potential past analogs, then a continuous-number
measure will correctly determine that A is four times
closer to X than is B, whereas a coarse category de-
scription would misleadingly group B in the same cat-
egory as X, and the closer A in a separate category from
X. Most conditional climatology systems are based on
the use of such coarse categories (e.g., four seasons with
sharp thresholds). In contrast, WIND-3 uses continuous
fuzzy sets to evaluate a degree of similarity between
compared observations (see Fig. 3). For each hour in
the 0–24 h period, all potential analogs are evaluated
according to their degree of similarity with the ob-
served or expected conditions. The most similar ana-
logs are identified and ordered according to a decreas-
ing degree of similarity, and form an analog ensemble, a
group of past observations with conditions most similar

FIG. 2. Crisp (nonfuzzy) categories tend to misrepresent data
and thus systematically lose information about the degree of simi-
larity between compared data items.
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to current and forecast conditions, from which expec-
tations about the ceiling and visibility may be based.
This is further explained below.

Second, previous systems do not integrate specific
data from current actual observations and valid model
guidance. In contrast, WIND-3, in real time upon the
receipt of each new airport observation, integrates the
observation with specific conditions describing the cur-
rent weather case, including weather variables forecast
for the 1–24 h period from models, and ambient condi-
tions related to the ceiling and visibility (precipitation,
wind, humidity, and temperature). The results are
available for forecasters through a Web browser in tex-
tual and graphical summaries within seconds of the re-
ceipt of the latest observation. This increases the con-
venience of the conditional climatology and thereby
promotes the use of the technique. This is further ex-
plained below.

Hastie et al. (2001) distinguish between two basic
methods for statistical learning and prediction: 1) para-
metric linear models and least squares, and 2) nonpara-
metric k-NN methods. Based on a review of postpro-
cessing systems for prediction of the ceiling and visibil-
ity, the former approach has been applied and tested
much more than has the latter (e.g., Glahn and Lowry
1972; Bocchieri and Glahn 1972; Bocchieri et al. 1974;
Wilson and Sarrazin 1989; Vislocky and Fritsch 1997;
Leyton and Fritsch 2003; Leyton and Fritsch 2004; Ja-
cobs and Maat 2005). The systems reviewed are largely
(but not completely) based on the former type of
method. In the review, no systems could be found based
on the later type of method. WIND-3 applies and tests
the nonparametric k-NN method, which in meteoro-
logical terms may be thought of as a basic analog
method.

2. Method

The previous section introduces the problem of ob-
jective forecasting of the ceiling and visibility, and de-
scribes some previously tried approaches. This section
describes a new approach to the problem that combines
two previously untried methods, analog forecasting and
fuzzy logic, in the WIND-3 system.

a. Analog forecasting and fuzzy logic

Analog forecasting is defined as a “method of fore-
casting that involves searching historical meteorological
records for previous events or flow patterns similar to
the current situation, then making a prediction based
on those past events or patterns” (Glickman 2000). Be-
cause similarity can be perceived and defined in many
different ways, forecasting systems that use the analog
method are diverse. The analog method appeals intu-
itively to forecasters who, when faced with a seemingly
familiar forecast situation, wonder how similar situa-
tions evolved in the past.

An advantage of the analog method, compared to
other methods, is that when its results appear doubtful,
they are relatively easy to trace and reconstruct. The
observations that solutions are based upon can be kept
throughout the processing routine and can be available
for inspection along with the summary solutions. If a
forecaster doubts an analog forecast of a ceiling, he or
she can inspect the particular analogs used to make the
forecast, reject some of them for being poor analogs for
the current situation, and revise the solution accord-
ingly.

Analog forecasting can be achieved through the ap-
plication of a k-NN algorithm. The most similar analogs
for a given weather situation, the k-NN, may be treated
as an analog ensemble. The analog method applied in
WIND-3 is essentially an application of k-NN, which is
described by the online encyclopedia Wikipedia (cited
2006; available online at http://en.wikipedia.org/wiki/
K-nearest_neighbor_algorithm) as follows:

In pattern recognition, the k-nearest neighbor algo-
rithm (k-NN) is a method for classifying objects based
on closest training examples in the feature space. The
training examples are mapped into multidimensional
feature space. The space is partitioned into regions by
class labels of the training samples. A point in the
space is assigned to the class c if it is the most frequent
class label among the k nearest training samples. Usu-
ally Euclidean distance is used. The training phase of
the algorithm consists only of storing the feature vec-
tors and class labels of the training samples. In the
actual classification phase, the same features as before
are computed for the test sample (whose class is not

FIG. 3. A fuzzy set for measuring the degree of similarity, �(x),
between two variables. The greater the difference between two
variables, x, the lower the value of the degree of similarity. The
parameter � is continuous and can assume values in the range
0.0 � � � 1.0, where particular values can correspond to quanti-
tative descriptions of similarity, such as very, quite, and slightly. It
contrasts with a discontinuous binary function (similar or not simi-
lar).
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known). Distances from the new vector to all stored
vectors are computed and k closest samples are se-
lected. The new point is predicted to belong to the
most numerous class within the set.

With WIND-3, “class” refers to values or ranges of
values of the ceiling and visibility in k-NN. For ex-
ample, given two classes, IFR and VFR, if the majority
of a case’s nearest neighbors are IFR, then the case
itself can be predicted to be IFR. How the distance
measure is developed and applied is described in detail
below in section 3c.

In describing the k-NN method, Hastie et al. (2001)
explain that whereas “the linear model makes huge as-
sumptions about structure and yields stable but possibly
inaccurate predictions [the] method of [k-NN] makes
very mild structure assumptions: its predictions are of-
ten accurate but can be unstable.”

Two important issues in the application of the k-NN
method are the selection of an optimal value of k and
the specific choice of the distance measure. The insta-
bility of solutions from the k-NN technique increases as
k decreases: when k equals 1, the nature of every point
being modeled is determined by that of its single near-
est neighbor in the training data, and slight changes in
independent variables often change the selection of the
nearest neighbor and thus the solution, whereas when k
is higher, the nature of every point being modeled may
be determined by that of the majority of its k nearest
neighbors, and slight changes in independent variables
seldom change the solution. In preliminary experi-
ments, using a database of approximately 300 000
hourly airport observations, by varying the value of k, it
was found that a value of k � 16, as a default setting,
gave the best results in terms of summary statistics; or
in other words, an analog ensemble that consists of the
0.005% of past observations most similar to the current
situation gives generally best results for k-NN (Hansen
2000, section 4.2). For testing WIND-3 with a large
number of forecasts, k � 16 was applied, but for any
individual forecast, one could specify any value for k.

Although Euclidean distance measures are usually
applied for k-NN, a fuzzy logic–based similarity mea-
sure was applied for WIND-3 because the analog
method depends on an evaluation of the overall simi-
larity based on a comparison of numerous, distinct con-
tinuous and categorical properties, and fuzzy logic has
proven particularly effective for such problems in a
wide variety of domains (Hansen 2000, section 2.4).
WIND-3 uses fuzzy logic to emulate an expert assessing
the degree of similarity between current and past
weather situations, where the degree of similarity is
represented by a value that ranges continuously along a
scale from 0.0 (completely dissimilar) to 1.0 (identical),

with relative degrees of similarity describable by nu-
merical values anywhere along the scale, and by corre-
sponding fuzzy words. For example, referring to Fig. 3,
if two temperatures differ by 2°C, then � � 0.9; if they
vary by 4°C, then � � 0.5; and if they vary by 8°C, then
� � 0.25. In these operations, � represents a similarity
index, the values of which correspond to respective
qualitative degrees of similarity: very, quite, and
slightly. The fuzzy set contrasts with the “crisp set”
drawn as a discontinuous function (Figs. 2 and 3), which
is essentially what is applied in all previous conditional
climatology systems for the ceiling and visibility, and
which systematically loses information about the de-
gree of similarity between compared data items, infor-
mation that is of value for analog forecasting (e.g., the
weight of any analog’s contribution to a forecast can be
weighted according to its degree of similarity to the
current case). For a theoretical basis of a fuzzy k-NN
algorithm, the reader can refer to Keller et al. (1985).
WIND-3 consists of three parts that are described in
the following subsections: data, a fuzzy similarity-
measuring algorithm, and a forecast composition step.

b. Data

The following data for 190 aerodrome sites are used:

1) Archives of aerodrome observations (METARs)
describing past weather conditions. Only regular
hourly observations are currently readily available
and used (“special” observations are not used). All
the routinely observed variables listed in Table 1 are
available. The data were subjected to thorough
quality control and pertain to the period from 1971
to 2004 inclusively. Records for major airports are
more than 99% complete. Records for most sites are
more than 90% complete. Only 20 airports have
records less than 50% complete, and these are gen-
erally minor airports whose observation programs
began during the later part of the period. The data is
described in the National Climate Data and Infor-
mation Archive (2006).

2) Recent aerodrome observations describing recent
and present weather conditions. All observations
are available, both regular hourly observations and
additional special observations, which are made
whenever conditions change significantly. For regu-
lar hourly observations, all of the routinely observed
variables listed in Table 1 are available. The data
used to compose the present case include the latest
two regular hourly observations plus any special ob-
servations received since the latest whole hour.

3) GEM model–based, MOS-based forecast guidance
describing future conditions. These data are valid
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for the 0–24-h projection period. Forecast values of
all the routinely observed variables listed in Table 1
are available and used, except for the ceiling and
visibility themselves. The model-based forecast vari-
ables help WIND-3 to anticipate changes in condi-
tions that often signal changes in ceiling and visibil-
ity, such as wind shifts, or the onset or cessation of
precipitation.

The reception of each new airport observation trig-
gers the composition of a current “case” and the pro-
duction of an analog forecast. What is known from a
new observation (for time t � 0 h) and what is inferred
from model-based guidance (for t � 1 h, . . . , t � 24 h)
is combined as a “present case” (Fig. 4). Basically, in
the 0–6-h time frame, conditions are interpolated from
completely observation-based at t � 0 h to completely
model-based at t � 6 h (and from there on to t � 24 h).

The GEM model–based, MOS-based guidance is re-
ferred to as the Canadian Updateable Model Output
Statistics (UMOS) model, and its accuracy and the
steps taken to remove bias from the GEM are de-
scribed by Wilson and Vallée (2003). UMOS is based
on data ranging from 3 to 15 h old, as it is produced
after the 0000 and 1200 UTC model runs, and its data
are available 3 h after these times at 0300 and 1500
UTC. UMOS guidance valid at 3-h intervals is available

for each site. Model guidance describes the following
conditions: vector wind, temperature and dewpoint
temperature, and precipitation occurrence and type.

To interpolate in the 0–6-h time frame, the following
three steps are applied:

1) Continuous conditions (vector wind, temperature,
and dewpoint temperature) are interpolated linearly
from observed to model-based values.

2) Model-based guidance of precipitation is verified
against the t � 0 h observation before its use in the
1–2-h period. If the model correctly forecast occur-
rence or nonoccurrence, it is used in the 1–2-h pe-
riod; if not, then a persistence of the t � 0 h obser-
vation is used instead. In the 3–6-h period, the
model-based precipitation forecast is used regard-
less of verification at t � 0 h.

3) Finally, to promote consistency, the precipitation
type for each hour in the 1–5-h period is checked
against the concurrent temperature. If it is obviously
inconsistent, the type is changed to be consistent
(e.g., if due to interpolation the temperature fell be-
low �2°C, any rain would be changed to snow).

Note that in some cases the above steps can intro-
duce large errors, particularly if actual conditions are
about to change sharply, or if model-based forecasts are
poor. Forecasters are advised to be alert to such cases

FIG. 4. Analog retrieval is achieved by measuring the similarity between the present com-
posed case and all past cases. All comparable variables of cases are compared, pair by pair,
and the lowest similarity value describes the overall similarity between the two cases, sim.
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and to doubt the resulting analog forecasts. However,
in most cases, these steps describe plausible conditions
in the 1–6-h time frame, which in turn provide a basis
for analog forecasts.

c. Fuzzy similarity-measuring algorithm

The fuzzy similarity-measuring algorithm is used to
find and retrieve past cases most similar to the present
case (Fig. 4). It measures the similarity of two types of
variables: continuous and categorical. All of the vari-
ables routinely reported in METARs (Table 1) are con-
tinuous except for one, precipitation, which is categori-
cal.

All of the continuous variables, except for wind
speed, are compared for similarity using the fuzzy
set operation shown in Fig. 3, where the dimensions
of the fuzzy set are specified by the values listed in
Table 2. For example, when two wind directions are
compared, a difference of 10° maps to very similar or
�direction(10) � 0.9, a difference of 20° maps to quite
similar or �direction(20) � 0.5, and a difference of 40°
maps to slightly similar or �direction(40) � 0.25.

Wind speed is the only continuous variable that is
compared using a second type of fuzzy operation—a
fuzzy decision surface (Fig. 5). For example, if two
speeds are 5 and 10 kt, they are described as quite simi-
lar or �speed(5, 10) � 0.5, and if two speeds are 5 and 20
kt, they are described as slightly similar or �speed(5, 20)
� 0.25.

Precipitation is the only categorical variable, and it is
compared using a third type of fuzzy operation—a
fuzzy relation (Table 3). Thus, for example, �pcpn(rain,

rain) � 1.0 or identical, �pcpn(rain, showers) � 0.75 or
between very and quite similar, and �pcpn(rain, drizzle)
� 0.50 or quite similar. For any two types of commonly
reported precipitation, a similarity measurement is
achieved using a lookup table (an expanded version of
Table 3).

The values in Tables 2 and 3 are based on aviation
forecasters’ subjectivity, obtained by asking forecasters
what differences between values in weather variables
they would regard as corresponding to very, quite, and
slightly similar conditions. This is a standard approach
in designing fuzzy expert systems: acquiring knowledge
from experts and encoding it in fuzzy rules (Kuciauskas
et al. 1998; Meyer et al. 2002). The motivation for com-
bining fuzzy operations with the analog method is not
to objectively measure similarity, nor is it to somehow

TABLE 2. Values used to calibrate fuzzy sets to measure simi-
larity between two continuous conditions. Values correspond to
operations and widths of fuzzy sets as illustrated in Fig. 3. Values
are absolute for all conditions, except for the ceiling height and
visibility, for which fractional values are used. Attributes not
listed here are not compared (e.g., precipitation intensity, pres-
sure tendency).

Attribute
Slightly
similar

Quite
similar

Very
similar

Date of the year (Julian) 60 days 30 days 10 days
Hour of the day (UTC) 2 h 1 h 0.5 h
Cloud amount 4/10 2/10 1/10
Ceiling height* 1⁄4 1⁄2 3⁄4
Visibility* 1⁄4 1⁄2 3⁄4
Wind direction 40° 20° 10°
Dewpoint temperature 4°C 2°C 1°C
Dry-bulb temperature 8°C 4°C 2°C

* For example, for ceiling height, a value of 3⁄4 implies that if the
lower ceiling is 600 ft and the higher ceiling is 800 ft, then they
will be described with words such as “very similar” and with
� � 0.9.

FIG. 5. Fuzzy decision surface, �, used to represent the degree
of similarity between two values of wind speed, x1 and x2 in which
�(x1, x2) ranges from 0.0 (dark) to 1.0 (light). Generally, � equals
the quotient of the lower value divided by the higher value. When
both values are near 0, the decision surface is adjusted to repre-
sent higher similarity (as shown at lower left).

TABLE 3. Fuzzy relations used to measure similarity between
precipitation types, all variables are referred to as “weather” in
METARs. Only part of the lookup table is shown. The complete
table has values to enable comparisons of any type of observable
weather (e.g., ice pellets, snow grains, etc.). The lookup table
associates similar weather types (e.g., rain resembles showers) and
disassociates dissimilar weather types (e.g., drizzle does not re-
semble ice pellets).

No rain 1.00
Drizzle 0.02 1.00
Showers 0.03 0.50 1.00
Rain 0.01 0.50 0.75 1.00
Snow 0.01 0.05 0.05 0.05 1.00

No rain Drizzle Showers Rain Snow . . .
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optimize the analog method; rather, it is to emulate
expert aviation forecasters in assessing degrees of simi-
larity between variables that describe current weather
(actual and forecast conditions) and potential past ana-
logs, and to apply such assessments for analog forecast-
ing.

Because the analog method itself reflects variations
in independent variables (location, season, etc.), the
same similarity tests and values are applied for each
forecast at each site and time. The specific climatology
of each site is reflected by the fact that in forecasting for
the site, k-NN results are drawn from observations for
only that site. Seasonal variations are reflected by a
higher degree of similarity attributed to past observa-
tions that come from closer Julian dates.

Corresponding variables in the present case and ap-
proximately 350 000 past cases are compared using the
fuzzy operations described above, and the most analo-
gous cases are saved in an ordered list (Fig. 4). These
analogs, the fuzzy k-NN, are used to make analog fore-
casts. The whole computation process takes only a
small fraction of a second for each forecast. Efficiency
is achieved by stopping tests and proceeding to the next
candidate analog should a pair of variables measure as
less similar than the least similar of the k-NN found so
far. Computationally, the order of the algorithm drops
quickly: O(n3) → O(n). In other words, the time re-
quired to search an airport’s archive for the k-NN is
proportional to the number (n) of observations in the
archive.

Referring to Fig. 4, in assessing the degree of simi-
larity between projected times, a(1, . . . , 24), and re-
spective potential analog times, b(1, . . . , 24), two types
of similarity are assessed: the similarity of trends and
conditions at respective times zero (t � 1 h and t � 0 h),
and the similarity at respective projection times them-
selves (t � 1 h, . . . , t � 24 h). The former has two
properties: first, it permits direct comparison of the ceil-
ing and visibility themselves, values that are not well
forecast by models or MOS for a(t � 1, . . . , 24), and
second, it has a diminishing influence as the projection
period increases (i.e., similar conditions at respective t
� 1 h and t � 0 h may be assumed to have more value
for identifying analogs for t � 1 h than for t � 12 h).
Therefore, for assessing the degree of similarity be-
tween current and past conditions, two methods are
used: first, for the 1–6-h period, the measured similarity
is determined by the minimum of both types of simi-
larity, and second, for the 7–24-h period, the measured
similarity is determined only by the similarity between
conditions at the respective projection times them-
selves, without regard to what conditions were at the

respective times zero and without regard to the actual
ceiling and visibility data in a(t � 1) and a(t � 0).

A flow chart for the algorithm is shown in Fig. 6. The
threshold for admission to the k-NN set is referred to as
the � level, the lowest level of similarity among the
k-NN. There are three constraints on �:

1) 0.0 � � � 1.0,
2) the � level is initialized to 0.0, and
3) the � level rises progressively during the climate ar-

chive search.

Thus, the computational cost of the similarity mea-
surement decreases progressively during the climate ar-
chive search. In essence, (1.0 � �) is the normalized
radius of a hypersphere centered on the present case
that contains k-NN after climate archive traversal is
complete. The search for the k-NN may be visualized as
a progressively contracting hypersphere centered on
the present case (Fig. 7). Points correspond to observed
weather states at particular hours. Axes correspond to
differences between compared variables. Differences
are determined by fuzzy similarity-measuring functions,
expertly tuned for a first approximation, all applied to-
gether simultaneously.

When all of the variables in two particular observa-
tions are compared, the overall similarity of the obser-
vations is taken to be the minimum of all of the simi-
larity values, for two reasons: computationally, it is ef-
ficient and fast, and interpretatively, it ensures that all
variables of the k-NN are at least as similar as the least
similar variable. An example of similarity measurement
between two observations using fuzzy operations is
shown in Table 4. Values of the similarity between in-
dividual attributes are calculated using the operations

FIG. 6. Algorithm flow chart. Process identifies and orders most
similar past cases according to their overall similarity with present
case.
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described above and by Tables 2 and 3 and Fig. 3. The
METARs would normally be written as follows:

METAR “A” 151200Z 08012KT 1SM �RA BR
BKN008 OVC015 08/08 RMK SF8SC2

METAR “B” 251200Z 10009KT 4SM �SHRA
BKN006 OVC015 07/07 RMK SF6SC4

d. Forecast composition

After the closest analogs (the k-NN) are identified, a
simple method is applied for forecast composition. For
the ceiling, values of the ceiling in the k-NN are listed
in order of increasing value from lowest to highest, and
the value at the 30th percentile position, xcig, is applied
as a deterministic prediction of the ceiling (i.e., in the
k-NN, 30% of the observations have ceilings below or
at xcig, and the other 70% have ceilings higher than
xcig). The same method is applied to obtain a determin-
istic prediction of the visibility, xvis. Referring to Fig. 4,
this method reorders the list of k-NN twice: first, from

in order of decreasing similarity to in order of increas-
ing ceiling; second, to in order of increasing visibility.

In preliminary experiments, it was initially supposed
that forecasts based on the median value in the ordered
list (the 50th percentile) would give accurate forecasts
(Hansen 2000). However, through experimentation, it
was found that using the 30th percentile gave better
results, a better balance between the probability of de-
tection (POD) of low ceilings and the false alarm ratio
(FAR) of low ceilings. Because of how POD and FAR
are formulated, as the percentile value used lowers,
both the POD and the FAR of low ceilings rise. Refer-
ring to Table 5, the formulas are POD � a/(a � c) and
FAR � b/(a � b).

Individual 24-h forecasts of ceiling and visibility are
plotted alongside observed values for the same time
period in Fig. 8. Two qualities of the forecast are ap-
parent: forecast values often agree with observed val-
ues, particularly with respect to flight category, and
forecast values sometimes vary sharply from one hour
to the next. These qualities agree with the manner in
which Hastie et al. (2001) characterize the k-NN
method: “its predictions are often accurate but can be
unstable.”

Referring to Fig. 8, forecast conditions (GEM–
UMOS guidance) were (a) light rain and snow begin-
ning at 1200 UTC 2 December, changing to light snow
at 1600 UTC and continuing through 0600 UTC 3 De-
cember; (b) light northeasterly winds shifting to light
westerly winds around 1200 UTC 2 December, then
strengthening gradually for the rest of the period; and
(c) dewpoint temperature near 0°C through 1800 UTC
lowering steadily thereafter to �9°C by 0600 UTC 3
December. Actual conditions were (a) light snow
throughout the period, mixed with rain only between
0900 and 1500 UTC; (b) winds generally as forecast;
and (c) dewpoint temperature generally as forecast.

Accordingly, WIND-3 forecast the ceiling and visibil-
ity to lower abruptly at 1200 UTC, consistent with the
forecast onset of precipitation at that time. From 1200
UTC 2 December to 0600 UTC 3 December, there was
a gradual rising trend in the ceiling and visibility, con-
sistent with the wind shift from northeasterly to west-
erly and gradual drying of the air. In this forecast case,

TABLE 4. Example of calculations of the overall similarity of
two METARs: �overall, is the minimum of all the individual values
(�1, . . . , �n). In this case, �overall � 0.25 or slightly similar, due
mainly to a large difference in visibility, 1 vs 4 mi.

Attribute
(a1, . . . , an) METAR A METAR B

Similarity
(�1, . . . , �n)

Date of the year 15 Jul 25 Jul 0.90
Hour of the day 1200 UTC 1200 UTC 1.00
Wind direction 80° 100° 0.50
Wind speed 12 kt 9 kt 0.75
Visibility 1 SM 4 SM 0.25
Precipitation type Rain Rainshower 0.75
Cloud amount 8/10 6/10 0.50
Ceiling height 600 800 0.90
Dry-bulb temperature 8°C 7°C 0.95
Dewpoint temperature 8°C 7°C 0.90
�overall � minimum(�1, . . . , �n) � 0.25

TABLE 5. Contingency table for categorical forecasts of binary
events.

Event observed

Yes No

Event forecast Yes a (hit) b (false alarm)
No c (miss) d (correct rejection)

FIG. 7. A way to visualize analog forecasting using the most
similar analogs.
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because the ambient conditions were well forecast by
models, the accompanying forecasts of the ceiling and
visibility were quite accurately forecast by WIND-3.
The following section describes the accuracy of
WIND-3 based on a large number of cases.

3. Results

This section describes the accuracy of WIND-3 fore-
casts based on verification using the Heidke skill score
(HSS) and summarizes feedback from forecasters.

a. Verification

Studies of official forecasts (TAFs) and objective
forecasts have shown that persistence forecasts are a
highly competitive benchmark in the 0–6-h period
(Reid 1978; Dallavalle and Dagostaro 1995). Several
systems have used persistence as a benchmark to mea-
sure skill in this forecast period (Wilson and Sarrazin
1989; Vislocky and Fritsch 1997; Leyton and Fritsch
2004; Jacobs and Maat 2005). In addition to reporting
this type of skill, Jacobs and Maat (2005) report relative
accuracy compared to both persistence and official
TAFs and skill in all projection periods out to 18 h.

The accuracy of WIND-3 was verified with approxi-
mately 350 000 hindcasts for 190 stations for the period
February–April 2005. HSS was calculated using a 2 � 2
contingency table of forecasts versus observations of
two exclusive flight categories: instrument flight rules
(IFR) and visual flight rules (VFR). Whereas POD and
FAR each only refer to two of four values tallied in the
contingency table, HSS refers to all four values and is,
thus, a more comprehensive measure of forecast accu-
racy. With reference to Table 5, the formula for HSS is

HSS � 2(ad � bc)/[(a � c)(c � d) � (a � b)(b � d)]
(Wilks 2006). IFR conditions exist if ceiling is below
1000 feet or if visibility is below 3 miles; otherwise,
VFR conditions exist.

WIND-3 forecasts were verified alongside two
benchmark methods, persistence and current airport
forecasts (TAFs). To enable fairly direct comparison,
all three methods were verified using the technique de-
scribed by Stanski et al. (1999). Basically, the technique
uses the HSS to verify forecast conditions against actual
conditions for every minute of any period of interest.
Thus, for example, if a special observation made 30 min
after the hour causes a TAF to switch from a “hit” to a
“missed event,” the TAF for that hour can be scored
half as a hit and half as a missed event. Likewise, if the
TAF for any period implies a sort of probabilistic fore-
cast, say “A PROBXX B,” the TAF can be scored
partly based on a forecast of A and partly based on a
forecast of B. Thus, for example, a TAF of “A TEMPO
B” is treated as if it were 60% A and 40% B, and a TAF
of “A PROB30 B” is treated as if it were 70% A and
30% B. Forecasts made by WIND-3 and forecasts made
by persistence imply no sort of probability, so they are
simply verified one to one against actual conditions for
each minute of any period of interest.

A summary of the results for three forecast methods
is shown in Fig. 9. TAF statistics are provided by the
Services, Clients and Partners Directorate of Environ-
ment Canada and calculated following the method de-
scribed by Stanski et al. (1999). Data consisted of in situ
airport observations (current hourly METARs and his-
torical ones from 1971 to 2004), and GEM- and UMOS-
based guidance from the Canadian Meteorological
Centre (CMC).

FIG. 8. Actual observations and matching 24-h analog forecasts and for Montreal International Airport (CYUL)
for 2–3 Dec 2005: (a) ceiling and (b) visibility. Solid lines are actual values and dashed lines are forecast values. The
x axes are time (UTC); y axes and horizontal gridlines show critical thresholds of flight categories.
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WIND-3 forecasts were generally more accurate than
forecasts from the competitive methods in the 0–24-h
period (Fig. 9). In the 0–6 h period, the HSS of analog
is higher than that of the persistence and TAFs: 0.56
compared to 0.53 and 0.49, respectively In the 7–24-h
period, the HSS of the analog is markedly higher than
that of the persistence: approximately 0.4 for the analog
compared to 0.2 or less for the persistence (TAF sta-
tistics are not available for 7–24 h). In the second time
frame, much of the skill of the analog method is due to
GEM–UMOS guidance in describing ambient condi-
tions.

b. Feedback from forecasters

Since late 2004, WIND-3 forecast guidance products
have been provided in real time to operational meteo-
rologists at MSC’s two meteorological aviation centers.
Forecasters have described the products as having a
“high glance value,” in that they allow users to quickly
and easily see where conditions are most likely to
change and how.

Forecasters have described WIND-3 forecast guid-
ance as transparent and comprehensible. If a forecaster
with a WIND-3 forecast wonders about its basis, he or
she can examine a secondary display with more detailed
information, which includes a list of all of the assumed
and driving conditions (1–24-h forecasts of wind direc-
tion and speed, precipitation occurrence and type, tem-
perature, and dewpoint), and a summary of the actual
historical observations that were used to make the fore-
cast, the individual analogs. Forecasters can assess the
reliability of the forecasts by checking these conditions
against other contextual forecast information (e.g., a
forecast may be based on an assumption of snow and
easterly winds at forecast time t � 6, whereas rain and
westerly winds may currently appear more likely).

4. Conclusions and recommendations

A system, WIND-3, that produces deterministic fore-
casts of ceiling and visibility using the analog method
has been described. It uses a similarity-measuring algo-
rithm based on fuzzy logic and a 34-yr-long database of
hourly airport observations. WIND-3 predictions of
IFR conditions in the 0–6-h period had an HSS of 0.56,
compared to an HSS of 0.53 for persistence. In the
7–24-h period, WIND-3 predictions had an HSS of
about 0.40, compared to an HSS of 0.2 or less for per-
sistence. The system has been deployed semioperation-
ally for over a year and is regarded by forecasters as a
useful addition to their set of forecasting tools.

Recommended future work

Three possible extensions of this research appear
promising. First, as suggested by Leyton and Fritsch
(2003) and Jacobs and Maat (2005), integrating comple-
mentary information from radar data and short-range
radar-based forecasts could significantly improve the
accuracy of forecasts of the ceiling and visibility. Cur-
rently, when WIND-3 inputs faulty forecasts of precipi-
tation, the resultant forecasts of the ceiling and visibil-
ity are inevitably negatively affected.

Second, the potential for probabilistic forecasts
based on analog ensembles can be explored using ap-
propriate verification measures. Basically, such fore-
casts could be made by treating the distribution of ceil-
ing values, or visibility values, as a probability density
function (PDF). Thus, for example, one could expect a
10% probability of a ceiling value at or below the value
marking the lowest 10% of the PDF. Such forecasts
could be verified using the relative operating character-
istics (ROC).

Third, the development of more sophisticated inter-
faces and display systems for forecasters would increase
the applicability of the analog method. A more conve-
nient and interactive interface would increase the flex-
ibility of WIND-3. Occasionally, forecasters would like
to vary the conditions that forecasts are based upon
(e.g., change precipitation occurrence or timing, or alter
winds), to examine the implications of alternate sce-
narios.
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FIG. 9. HSS for predictions of IFR conditions (ceiling �1000 ft
or visibility �3 mi). Statistics are comprehensive for 190 Canadian
airports for the period from Feb to Apr 2005.
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