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Abstract

A fuzzy logic based methodology for knowledge acquisition is developed and used for
retrieval of temporal cases in a case-based reasoning system.  The methodology is used to
acquire knowledge about what salient features of continuous-vector, unique temporal
cases indicate significant similarity between cases.  Such knowledge is encoded in a
similarity-measuring function and thereby used to retrieve k nearest neighbors (k-nn) from
a large database.  Predictions for the present case are made from a weighted median of the
outcomes of analogous past cases (i.e., the k-nn, or the analog ensemble).  Past cases are
weighted according to their degree of similarity to the present case.

Fuzzy logic imparts to case-based reasoning the perceptiveness and case-
discriminating ability of a domain expert.  The fuzzy k-nn technique retrieves similar
cases by emulating a domain expert who understands and interprets similar cases.  The
main contribution of fuzzy logic to case-based reasoning (CBR) is that it enables us to use
common words to directly acquire domain knowledge about feature salience.  This
knowledge enables us to retrieve a few most similar cases from a large temporal database,
which in turn helps us to avoid the problems of case adaptation and case authoring.

Such a fuzzy k-nn weather prediction system can improve the technique of
persistence climatology (PC) by achieving direct, efficient, expert-like comparison of past
and present weather cases.  PC is an analog forecasting technique that is widely
recognized as a formidable benchmark for short-range weather prediction.  Previous PC
systems have had two built-in constraints: they represented cases in terms of the
memberships of their attributes in predefined categories and they referred to a preselected
combination of attributes (i.e., cases defined and selected before receiving the precise and
numerous details of present cases).  The proposed fuzzy k-nn system compares past and
present cases directly and precisely in terms of their numerous salient attributes.  The
fuzzy k-nn method is not tied to specific categories, nor is it constrained to using only a
specific limited set of predictors.  Such a system for making airport weather predictions
will let us tap many, large, unused archives of airport weather observations, ready
repositories of temporal cases.  This will help to make airport weather predictions more
accurate, which will make air travel safer and make airlines more profitable.

Accordingly, a fuzzy k-nn based prediction system, called WIND-1, is proposed,
implemented, and tested.  Its unique component is an expertly-tuned fuzzy k-nn algorithm
with a temporal dimension.  It is tested with the problem of producing 6-hour predictions
of cloud ceiling and visibility at an airport, given a database of over 300,000 consecutive
hourly airport weather observations  (36 years of record).  Its prediction accuracy is
measured with standard meteorological statistics and compared to a benchmark prediction
technique, persistence.  In realistic simulations, WIND-1 is significantly more accurate.
WIND-1 produces forecasts at the rate of about one per minute.



1. Introduction

Fuzzy set theory based methods enable case-based reasoning (CBR) systems developers to impart

the perceptiveness and case-discriminating ability of a domain expert to CBR. 1  Our goal is to

develop a technique that will increase the usefulness of fuzzy methods for retrieval of similar

cases.  We deal with temporal cases in which the attributes are continuous variables, cases which

are described by spatiotemporal vectors.

We attend to the problem of how to increase the effectiveness of a basic weather

prediction technique that is referred to in meteorology as analog forecasting—a meteorological

form of CBR.  Analog forecasting makes predictions for a present weather situation based on the

outcomes of similar past weather situations.

Weather prediction presents special challenges for CBR.  Weather is continuous, data-

intensive, multidimensional, dynamic and chaotic.  These five properties make weather

prediction a formidable proving ground for any CBR prediction system that depends on

searching for similar sequences.  Searching for similar sequences is a problem which occurs in

diverse applications, such as stock market prediction (Rafiei 1999, and Xia 1997), plagiarism

detection (Shivakumar and Garcia-Molina 1995), forest fire prediction (Rougegrez 1993), and

protein and DNA sequencing (Pearson and Lipman 1988).  So, an effective basic technique for

finding similar sequences has potentially wider applicability than for just weather prediction.

Our survey of the literature about the problem of how to determine similarity and about

the nearest neighbors technique will be limited.  A huge amount of such literature already exists.

The problem of how to determine similarity interests researchers from numerous disciplines.

Many papers and several books have been written on the subject of nearest neighbors techniques.
2  Most of this literature focuses narrowly on the particular discipline it stems from or the

particular application it deals with.

                                                     
1 The opening statement is the thesis of this thesis.  Specific support for this statement can be found in a
number of articles that we review in Section 2.4 on page 65 (namely: Bonissone and Ayub 1992; Bonissone
and Cheetham 1997; Cheetham and Graf 1997; Göös et al. 1999; Hansen and Riordan 1998; Lefley and
Austin 1997; Main et al. 1996; Tobin et al. 1998; Weber-Lee et al. 1995; Winder et al. 1997).
2 The Interdisciplinary Workshop On Similarity And Categorisation (SimCat 97), held at the University of
Edinburgh in 1997, was “a gathering of researchers addressing similarity and categorisation from a wide
range of disciplines, including: artificial intelligence, machine learning, case-based reasoning, psychology,
philosophy, linguistics, statistics, semiotics, music, [and] design theory.” (Description of workshop
downloaded from http://www.dai.ed.ac.uk/conferences/simcat April 18, 2000)

A book that reprints 51 papers by different researchers is: Dasarthy, B. V. (ed.) 1991, Nearest
Neighbor Pattern Classification Techniques, IEEE Computer Society Press, Los Alamitos, CA.  All the
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We survey literature where the interests of fuzzy logic and CBR intersect (a relatively

small and growing subset), and we describe in detail a unique application for weather prediction

that uses a combination of fuzzy logic and CBR.

Based on our previous success with weather prediction using CBR and fuzzy logic

(Hansen and Riordan 1998), we hypothesize as follows:

1.2 Thesis structure

In the rest of this chapter, we briefly introduce the three subjects of the thesis title: CBR,

fuzzy logic, and weather prediction.  We focus on how each subject relates to retrieval of similar

cases.  In Section 1.3, we explain how CBR depends on retrieval of similar cases and explain

how the applicability of CBR is hindered by the problems of “case adaptation” and “case

authoring.”  In Section 1.4, we explain how fuzzy logic enables retrieval of similar cases.  In

section 1.5, we introduce the airport weather prediction problem addressed in this thesis, describe

the state of the art of artificial intelligence in weather prediction, and explain how a well-known

weather prediction technique known as “analog forecasting,” which is a meteorological form of

CBR, depends on retrieval of similar cases.

In Chapter 2, we survey the literature to focusing on how using a fuzzy k-nearest

neighbors based technique for retrieval of similar cases, designed and tuned with the help of

domain expert, can help us to exploit large databases of cases and available domain knowledge

about similarity, and can help us to avoid difficulties of case adaptation and case authoring.  We

describe the main resources for CBR, review how fuzzy logic applies to CBR, provide a

foundation for the fuzzy k-nearest neighbors (fuzzy k-nn) technique, review a number of CBR

                                                                                                                                                             

pattern classification deals with static images, or multi-dimensional cases.  There is no explicit coverage of
time dimension, or prediction.  However, the preface does say that “NN concepts are being applied in new
environments outside traditional pattern recognition.”

1.1 Hypothesis

Querying a large database of weather observations for past weather cases similar to a

present case using a fuzzy k-nearest neighbors algorithm that is designed and tuned with

the help of a weather forecasting expert can increase the accuracy of predictions of

cloud ceiling and visibility at an airport.
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applications that exemplify the fuzzy k-nn technique, and review weather prediction papers that

use CBR and fuzzy logic.

In Chapter 3, we describe our unique system for fuzzy k-nn based weather prediction.  In

Chapter 4, we describe a set of experiments to test the effectiveness of the system and presents

the results.  In Chapter 5, we present our conclusions and describe future possible directions for

this research.

1.3 Case-based reasoning

In this section, we give a general introduction to CBR.  We condense some frequently-

quoted articles about CBR.  In Chapter 2, we survey articles focusing on the overlaps of CBR,

fuzzy logic, and weather prediction.

Case-based reasoning is a method for solving problems by remembering previous similar

situations and reusing information and knowledge about that situation (Kolodner 1993; and

Leake 1996).  The original, basic idea is simple:

A case-based reasoner solves new problems by adapting solutions that were used to solve
old problems.  (Riesbeck and Schank 1989)

CBR is very effective in situations “where the acquisition of the case-base and the

determination of the features is straightforward compared with the task of developing the

reasoning mechanism.” (Cunningham and Bonzano 1999).

A classic flowchart for case-based reasoning is shown in Figure 1.  The flowchart is

basically the same as that of (Riesbeck and Schank 1989).  We have reformatted their flowchart

slightly to highlight knowledge-acquisition problems that continue to challenge CBR research.
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Based on an extensive survey of CBR, Aamodt and Plaza (1994) describe CBR as a four-

step process:

• Retrieve the most similar case or cases.

• Reuse the information and knowledge in that case to solve the problem.

• Revise the proposed solution if necessary.

• Retain the parts of this experience likely to be useful for future problem solving.

CBR
Inference Engine

CBR
Knowledge Base

Problem → Input
↓

Assign Indices ← Indexing
↓ Rules

Case Base Input + Indices
↓

Case → Retrieve ← Match
Memory ↓ Rules

↑ Retrieved Case
Store ↓

↑ Adapt ← Adaptation
Assign Indices ↓ Rules

↑ Proposed Solution
New ↓
Case ← Test ← New Solution

↓ ↓ ↑
Solution Failure Description Repair ← Repair

↓ ↑ Rules
Explain → Causal Analysis

↓
Predictive
Features

Figure 1.  Classic case-based reasoning flowchart.  This flowchart, conceptually the

same as that of (Riesbeck and Schank 1989), shows how knowledge acquisition is a

fundamental challenge for CBR system developers.  Developers must acquire

knowledge about how to index and match cases, how to adapt cases into solutions,

and how to repair failed solutions.
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These steps are illustrated in Figure 2.

1.3.1 Approaches to case-based reasoning

There are two basic approaches to CBR: a cognitive science based approach and a

technology based approach.  In the cognitive science based approach towards CBR, the goal is to

explain how intelligence works.  This view is expressed in the following statement.

Real thinking has nothing to do with logic at all.  Real thinking means retrieval of the
right information at the right time.  (Riesbeck and Schank 1989).

Cognitive scientists use CBR in an effort to deconstruct thinking.  To the degree that

CBR imitates thought processes, CBR models thought.

Figure 2.  CBR cycle.  (Figure is copied from (Aamodt and Plaza 1994) with kind permission of

Agnar Aamodt.  Downloaded on November 2, 1999 from

http://www.iiia.csic.es/People/enric/AICom.html#RTFToC11)
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Kolodner (1993) surveyed 82 CBR systems. 3  Kolodner defines a case as

a contextualized piece of knowledge representing an experience that teaches a lesson
fundamental to achieving the goals of the reasoner.

Kolodner’s definition of a case is applicable in this thesis.  Kolodner describes case-based

reasoning as

both a cognitively plausible model of reasoning and a method for building intelligent
systems.

Leake (1996) identifies four elements of CBR:

Case-based reasoning = retrieval + analogy + adaptation + learning

According to Leake, “CBR is fundamentally analogical reasoning.”  Leake explains that the

difference between CBR and analogy is mostly a matter of approach.

Research on analogy was originally concerned with abstract knowledge and structural
similarity, while research on CBR is more concerned with forming correspondences
between specific episodes based on pragmatic considerations about the usefulness of the
result.

Leake (1996) identifies five main problems in AI that can be improved by CBR:

knowledge acquisition, knowledge maintenance, increasing problem-solving efficiency,

increasing quality of solutions, and user acceptance.  Leake explains how CBR attempts to avoid

such knowledge-related problems by assuming that there are few domain rules.

Reasoning is often modeled as a process that draws conclusions by chaining together
generalized rules, starting from scratch.  CBR takes a very different view.  In CBR, the
primary knowledge source is not generalized rules but a memory of stored cases
recording specific prior episodes.  In CBR, new solutions are generated not by chaining,
but by retrieving the most relevant cases from memory and adapting them to fit the new
situations.  Thus in CBR, reasoning is based on remembering … remindings facilitate
human reasoning in many contexts and for many tasks, ranging from children’s simple
reasoning to expert decision-making.

Leake explains that CBR is based on the tenet that

the world is regular: similar problems have similar solutions.  Consequently, solutions for
similar prior problems are a useful starting point for new problem-solving.

                                                     
3 All of the CBR systems surveyed by Kolodner (1993) come from research based in the United States, a
fact subsequently pointed out by European researchers (López de Mántaras and Plaza 1997).  There was
apparently in the early 1990’s a little rivalry between the “first school” of cognitive science based CBR
researchers, based in the United States, and the “second school” of application oriented CBR researchers,
based in Europe.
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For anyone building a CBR application, this begs the questions:  Who’s remindings are

most valuable?  How is the world regular?  Who is most qualified to discern similarity?…

Presumably, knowledgeable people, or experts.

In the technology-oriented approach towards CBR, the goal is to construct useful

decision support systems, as opposed to deconstructing thought.  Technology is applied science,

not pure science.

Technologists build systems from whatever is useful.  Problem-specific knowledge is

useful for building decision support systems.  Therefore, technologists use knowledge acquisition

strategies to build CBR systems.  Over the past ten years, the technology-oriented approach has

gained momentum.  The recent “trend emphasizes the increasing importance of issues and

techniques in the development of knowledge intensive CBR systems.” (Aamodt and Plaza 1994).

CBR was originally proposed as an AI method to avoid the knowledge acquisition

problem, the bottleneck in expert system development.  CBR has been quite successful, as

attested to by the reviews of Riesbeck and Schank (1989), Kolodner (1993), Leake (1996), and

López de Mántaras and Plaza (1997).  However, it has become increasingly clear in the literature

that domain knowledge is valuable for technology-oriented CBR.  As Aha (1998) puts it,

“Knowledge engineering has been recast as case engineering.”

1.3.2 Challenges for case-based reasoning

Knowledge acquisition is a fundamental challenge for CBR system developers.

Developers must acquire knowledge about how to index and match cases, how to adapt cases into

solutions, and how to repair failed solutions.  Such knowledge enables us to build the “CBR

knowledge base” shown in Figure 1.

Leake (1996) identifies four challenges for CBR research:

• Case adaptation: developing methods to convert imperfectly analogous cases into

useful solutions.

• Case authoring: developing methods for preparing cases for inclusion in a case base,

e.g., developing tools to enable an expert to participate directly in the case acquisition

and case engineering process.

• Scaling up systems to large problems.

• Problems with libraries of many cases.
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Improving the processes of case adaptation and case authoring are probably the most significant

challenges in CBR today.  Both processes depend on knowledge acquisition.  Leake (1996)

describes the CBR challenge of case adaptation as follows.

Central questions for adaptation are which aspects of a situation to adapt, which changes
are reasonable for adapting them, and how to control the adaptation process.  Answering
these questions may require considerable domain knowledge, which in turn raises the
questions of how to acquire that knowledge.  Many CBR systems depend on that
knowledge being encoded a priori into rule-based production systems.  Unfortunately,
this approach raises the same types of knowledge acquisition issues that CBR was aimed
at avoiding.  It has proven a serious impediment to automatic adaptation.

Leake describes various methods for improving adaptation that divide into roughly two

types: direct and indirect.  Direct methods focus on the knowledge or methods used during

adaptation.  Indirect methods decrease the need for adaptation by retrieving cases that require

less adaptation.  If neither of these methods can be made to work, then the CBR system will enter

into an endless loop and fail (see loop in Figure 1).

Adaptation is a main challenge for CBR.  Indirect methods for avoiding adaptation

decrease the need for adaptation by retrieving cases that require less adaptation (Leake 1996).

Expertise about degree of feature salience can help us to avoid the need for adaptation.  Riesbeck

(1996) emphasizes that what sets CBR apart from rule-based reasoning is the presence of two

processes—partial matching and adaptation— and describes the mixed status of adaptation in

CBR as follows.

On the one hand, adaptation is the ‘reasoning’ part of ‘case-based reasoning.’
Furthermore, most early CBR work focussed on the development and application of
adaptation strategies, such as parameterization and abstraction/respecialization (Riesbeck
and Schank 1989).  On the other hand, adaptation is usually the weak link in a CBR
system.  Adaptation techniques are hard to generalize, hard to implement, and quick to
break.  Furthermore adaptation is often unnecessary.  The originally retrieved case is
often as useful to a human as any half-baked adaptation of it.

The fuzzy k-nn algorithm performs effective partial matching with a large database,

composes solutions based on a weighted median of cases (cases weighted according to their

degree of similarity) and, thereby, reduces the need for adaptation.  We lessen the need for

adaptation by scaling up to a large database of raw cases using a suitably designed fuzzy k-nn

similarity measuring algorithm (Hansen and Riordan 1998).Case authoring is the process of

preparing cases for inclusion in a case base.  Aha (1997) describes the CBR challenge of case

authoring as follows.

CBR is not a magic bullet for the expert systems community.  It is a technology that
demands attention to the process of case engineering, which bears resemblance to
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knowledge engineering, [and because of inherent problems in case engineering]
simplifying the case authoring task is of great practical value to prospective clients of
commercial CBR tools.

In switching from knowledge engineering to case engineering, developers trade the

problem of handcrafting rules for the problem of handcrafting cases.  A main problem in

implementing CBR is to build the Case Base, as shown back in Figure 1.

The requirement for application-specific knowledge to handcraft cases creates a

bottleneck in CBR development.  Domain experts are prohibitively expensive to employ for the

construction and maintenance of decision support systems.

1.3.3 Retrieval of similar cases

Retrieval is the first and most important process in case-based reasoning.  Case-based

reasoning begins with cases and cases are obtained by retrieval.  The basic problem in retrieval is

to find similar cases—to find good analogs.  The same problem challenges meteorologists who

try to apply the technique of “analog forecasting” for the problem of weather prediction.  We

focus on how to improve the process of finding good analogs because the obtainment of good

analogs will reduce the need for adaptation and the dependency on case authoring.

Improving retrieval is an open problem in CBR research and CBR system development

(Leake 1996).  How do we select past cases that best match the present problem?  Such selection

depends on being able to identify and evaluate relevant attributes and being able to perform

partial matching between cases.  Improving adaptation is another open problem in CBR.  How do

we adapt past cases that either do not agree perfectly with the current problem or do not agree

with each other?  Such adaptation depends on being able to make the best possible use of

imperfect analogs.

In this thesis, we propose using a variation of the fuzzy k-nearest neighbors (fuzzy k-nn)

method described by Keller et al. (1985) to enable a reasoner to identify and evaluate relevant

features based on the experience of a domain expert.  Experts evaluate and describe similarity

fluently using a fuzzy vocabulary.  For example, they might say, “Two attributes are slightly

similar if the difference between their values is near 10.”  Eliciting such knowledge from experts

and encoding it in fuzzy sets enables the fuzzy k-nn method to emulate a discriminating expert at

the task of finding similar cases.
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Aha (1998) explains that feature weighting is the main challenge in developing k-nn

algorithms. 4  He suggests that domain knowledge can assist k-nn algorithm development to

weight features and to select relevant features or combinations of features.  This thesis explains

how a fuzzy k-nn technique helps us to obtain and use such knowledge about feature salience for

determination of similarity.  According to Luger and Stubblefield (1998):

One of the most subtle and critical issues raised by CBR is the question of defining
similarity.  Although the notion that similarity is a function of the number of features that
two cases have in common is quite reasonable, it masks a number of profound subtleties.
For example, most objects and situations have an infinite number of potential descriptive
properties; case-based reasoners typically select cases on the basis of a tiny retrieval
vocabulary.  Typically, case-based reasoners require that the knowledge engineer define
an appropriate vocabulary of highly relevant features.  Although there has been work on
enabling a reasoner to determine relevant features from its own experience, determining
relevance remains a difficult problem.

The fuzzy k-nn system queries a database using whichever potential descriptive

properties best fit the present situation.  The fuzzy k-nn system, rather than learning about

important similarities and determining relevance “from its own experience,” is taught

opportunistically by a domain expert who is already well experienced at comparing attributes of

cases and able to fluently describe important similarities with fuzzy words.

1.4 Fuzzy logic

In the previous section, we explained how CBR depends on retrieval of similar cases.  In

this section, we give a general introduction to fuzzy logic and explain how it can be used to

achieve retrieval of similar cases.  We do not deal with fuzzy logic in depth—many books and

articles have done this already.  All the fuzzy logic methods used in this thesis are explained in

detail by Zimmerman (1991).

                                                     
4 Aha (1998) explains that k-nearest neighbor (k-nn) classifiers that use similarity functions to answer
queries are a frequently studied group of “lazy learners.”  Aha (1998) divides learning algorithms into two
categories: eager and lazy.  Eager learning algorithms process data before receiving queries and any related
new data.  Such processing converts large amounts of data into compact abstractions such as rule sets,
decision trees, or neural networks.  Whereas, lazy learning algorithms process data after receiving queries
and any new data, and can thus take advantage of last-minute information.

The fuzzy k-nn system described in this thesis may be viewed as a pure lazy learner.  The system
uses precise information about present cases—information that is only available in the context of the
present—to inform the search for similar past cases.  Anyone who is asked to find similar cases would
naturally ask: Similar to what?  The present case answers that question and is the basis of the query.
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Fuzzy logic is an established methodology that is widely used to model systems in which

variables are continuous, imprecise, or ambiguous. 5  The main idea of fuzzy logic is that items in

the real world are better described by having partial membership in complementary sets than by

having complete membership in exclusive sets. 6  This has the effect of increasing the resolution

and the fidelity of categorization.

For example, suppose we can assign people into two sets, short and tall.  In classical

logic (i.e., non-fuzzy or “crisp” logic) an arbitrary threshold is specified.  For instance, someone

who is shorter than 160 cm is deemed to be short, and someone who is 160 cm or taller is

deemed to be tall.  Using this logic, one would conclude that two people who are of nearly

identical height, 159 cm and 160 cm, fall into opposite categories of height, one short and the

other tall.  This is not how people think.

Whereas, in using fuzzy logic, an item may have partial membership in two or more sets.

Someone who is 160 cm can have 0.5 degree membership in the short set and 0.5 degree

membership in the tall set.  For different heights, memberships can range continuously from 0.0

to 1.0 to accord with human perception.  Fuzzy logic models how people think.

A fuzzy logic based methodology is used in this thesis for the following reasons.

• Fuzzy logic is effective for eliciting and encoding knowledge from domain experts

(Kantrowitz et al. 1997).  For instance, such knowledge can control recognition of

similarity between two weather situations (Hansen 1997).

• Fuzzy logic is well-suited to modelling continuous, real-world systems.  Many

systems dealing with environmental data use fuzzy logic (Hansen et al. 1999).

• Fuzzy logic has a “tolerance for imprecision which can be exploited to achieve

tractability, robustness, low solution cost, and better rapport with reality.” (Zadeh

1999).

Zadeh (1999) explains the third point in an article entitled From computing with numbers

to computing with words—from manipulation of measurements to manipulation of perceptions.

Zadeh’s vision is an inspiration for the fuzzy k-nearest neighbors technique described in this

thesis.  Zadeh (1996) expresses optimism for fuzzy logic partnering with other techniques, such

                                                     
5 Fuzzy logic is used in thousands of applications, in areas such as: transportation, automobiles, consumer
electronics, robotics, computers, computers, telecommunications, agriculture, medicine, management, and
education (Munakata and Jani 1994).
6 Zadeh (1965) first defined a fuzzy set as follows: “A fuzzy set is a class of objects with a continuum of
grades of membership.  Such a set is characterized by a membership (characteristic) function which assigns
to each object a membership ranging between zero and one.”
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as machine learning theory and chaotic systems analysis, both of which are touched on in this

thesis.

Fuzzy logic is especially useful for CBR because: CBR is fundamentally analogical

reasoning (Leake 1996), analogical reasoning can operate with linguistic expressions, and fuzzy

logic is designed to operate with linguistic expressions.

Fuzzy logic operates with linguistic, realistic variables, whereas classical logic operates

with Boolean, discrete variables.  A database query example illustrates the difference between

the two.  Suppose a marketing business is interested in identifying employees who have high

potential.  It could search its employee database for all employees who are young and who have

high sales.  Two approaches to querying the database are crisp range based and fuzzy set based.

The crisp approach is depicted in Figure 3 (a) (b) and (c).  With the crisp approach, one

specifies a discrete range based query as follows:

young ⇔ age ≤ 25 years

high sales ⇔ sales ≥ $500,000 per year

If there is an employee who is 26 years old who averages $1 million per year in sales, the

crisp search would fail to identify this employee.  This employee has “zero membership” in the

overlap of the specified crisp sets.  Yet, most people would reasonably think that this person is

young and has high sales.

The fuzzy approach is depicted in Figure 3 (d) (e) and (f).  With the fuzzy approach,  one

specifies a fuzzy set based query, in which fuzzy sets determine degree of membership in the sets

young and high sales.
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(d) Fuzzy set for young.
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(b) Crisp set for high sales.
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(e) Fuzzy set for high sales.
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(c) Crisp decision surface for

young with high sales.
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(f) Fuzzy decision surface for
young with high sales.

Figure 3.  Crisp sets and fuzzy sets.  Functions for dual membership in two sets.  Arrows show how a 26-
year old million-dollar-selling employee is accorded different levels of membership in the set young with
high sales by crisp sets and by fuzzy sets.  Using crisp sets, membership equals zero, whereas using fuzzy
sets membership equals 0.9.  The latter membership is more consistent with how people think.
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The dual membership in the sets of those young with high sales for the 26-year-old,

million-dollar-selling employee is calculated as follows.

max{µyoung, µ high sales} = max{0.9, 1.0} = 0.9

The employee has 0.9 degree of membership in the specified fuzzy sets.  This is consistent with

the view that most people would have that this person is young and has high sales.  Knowledge

of how to interpret and evaluate such attributes can be obtained by interviewing an expert and

encoding their responses as fuzzy sets.

Srinivasan et al. (1994) describe four enhancements that fuzzy logic provides to a neural

network, which could also be provided to CBR, as follows.

• “Amalgamation of different pieces of knowledge is possible by application of fuzzy rules.”
• “A large scale-knowledge base can be effectively handled and reduced by fuzzy front-end

processor, making [neural network] learning easy and fast—non-precise and context
dependent knowledge is represented using fuzzy logic.”

• “Recognition and learning from noisy data is possible.”
• “The technique is robust in that only some rules in knowledge in fuzzy knowledge base

require to be updated with changing input conditions, avoiding the need to retrain the neural
network.”

For instance, point number 4 implies, for CBR, that we could avoid the need to re-optimize the

entire case-comparison weight vector every time a new predictive/selective piece of knowledge is

added to a similarity measuring function.

Elicitation of domain knowledge is a basic and common application of fuzzy logic.  The

“Fuzzy Logic FAQ” explains how membership values can be determined through subjective

evaluation and elicitation as follows.

As fuzzy sets are usually intended to model people's cognitive states, they can be
determined from either simple or sophisticated elicitation procedures.  At the very least,
subjects simply draw or otherwise specify different membership curves appropriate to a
given problem.  These subjects are typically experts in the problem area.  Or they are
given a more constrained set of possible curves from which they choose.  Under more
complex methods, users can be tested using psychological methods.  (Downloaded on
April 20, 2000 from http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/fuzzy/part1/faq.html)

Fuzzy methods represent cases with any combination of words and numbers.  The fuzzy

k-nn technique retrieves similar cases by emulating a domain expert who understands and

interprets similar cases.  The main contribution of fuzzy logic to case-based reasoning (CBR) is

that it enables us to use common words to directly acquire domain knowledge about feature
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salience.  This knowledge enables us to retrieve a few most similar cases from a large database,

which in turn helps us to avoid the problems of case adaptation and case authoring.  When cases

don’t fit perfectly, as often they never will, a practical option may be to inspect many cases,

select the few most similar cases, and make reasonable inferences.

1.4.1 Fuzzy logic enables retrieval of similar cases

When domain experts are presented with a set of three unique situations and asked to

describe the similarity between the three pairs in the set, they are more likely to say “very,

somewhat, and slightly” than to say “yes, no, and I don’t know.”  The former response couches

the description of similarity in uncertain words, or fuzzy words.  The inherent uncertainty is due

to fuzziness, not randomness.

Figure 4 shows how such words map to fuzzy sets and thereby enable fuzzy operations to

emulate a domain expert in the task of comparison.  For a simple example, consider the problem

of describing the similarity of three weather situations where, for simplicity of illustration, each

weather situation is described only by temperature.  The fuzzy set shown in Figure 4 solves this

problem.

The fuzzy set in Figure 4 is designed by interviewing an expert weather forecaster who is

familiar with local effects.  We ask the expert, “At what points do you consider two temperatures

to be slightly similar, quite similar, and very similar?”  The above fuzzy set maps a response of
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Figure 4.  Fuzzy set to describe degree of similarity of temperatures as a function of the

difference between the temperatures.  Fuzzy set models cognitive state of expert weather

forecaster who evaluates differences.  Fuzzy set emulates expert at comparison.
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“8°C, 4°C, and 2°C.”  The function is unimodal, continuous, and returns values in the range

(0.0...1.0].  Fuzzy sets such as this are the basic component of the fuzzy k-nn technique.

Such fuzzy sets are a form of acquired knowledge.  This is knowledge about relevance,

feature salience, and importantly similar attributes.  This is not knowledge in the form of rules,

which is the commonest AI sense of knowledge.

Fuzzy sets allow a function, µ(x), to measure similarity between any attributes in the way

that an expert would.  For example:

humidity difference of 5% → very similar → µ(5) = 0.75

humidity difference of 20% → slightly similar → µ(20) = 0.25

In comparing cases composed of multiple attributes, attributes that are more important

than others have narrower fuzzy sets.  For example, wind direction affects local weather more

strongly than temperature, so it should have a narrower, more discriminating fuzzy set.

A system equipped with such a similarity-measuring function can take the present

temporal case and rate all the previous cases in terms of similarity.  In practice, all cases have

similarity scores: 0.0 < sim < 1.0  This quality of the fuzzy k-nn technique reflects perception of

real weather cases, which is that real weather cases are never identical and are never “totally

dissimilar.”

We combine fuzzy logic with CBR because fuzzy logic is helpful for acquiring

knowledge and it provides methods for applying knowledge to real-world data.  Fuzzy logic

simplifies elicitation of knowledge from domain experts, such as knowledge of how similarity

between two cases depends on the difference between their individual, collective, and temporal

attributes.  Fuzzy logic emulates human reasoning about similarity of real-world cases, which are

fuzzy, that is, continuous and not discrete.  For example, using fuzzy sets elicited from a weather

forecaster who is experienced at comparing and evaluating similarity between weather cases,

fuzzy logic emulates the forecaster at the task of recognizing good analogs.
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1.5 Weather prediction

In the previous two sections, we introduced CBR and fuzzy logic and explained how

these subjects relate to retrieval of similar cases.  In this section, we briefly introduce weather

prediction, describe a method of weather prediction called “analog forecasting” (a

meteorological form of CBR), and explain how analog forecasting depends on retrieval of similar

cases.

Fundamentally, there are only two methods to predict weather: the empirical approach

and the dynamical approach (Lorenz 1969a).  The empirical approach is based upon the

occurrence of analogs (i.e., similar weather situations).  The dynamical approach is based upon

equations of the atmosphere and is commonly referred to as computer modeling.  The empirical

approach is useful for predicting local-scale weather if recorded cases are plentiful (e.g., cloud

ceiling and visibility in a few square kilometres around an airport).  Because of grid coarseness,

the dynamical approach is only useful for modeling large-scale weather phenomena (e.g., general

wind direction over a few thousand square kilometers).

Weather prediction is regarded by meteorologists as both a science and an art.  Weather

prediction relies upon objective techniques based upon decades of research, and it relies upon

subjectivity and judgment based upon personal experience and local rules and practices.  We will

regard weather prediction as an objective process.  Objective techniques are universal, whereas

subjective techniques are local.  Objective techniques are used consistently and are portable,

whereas subjective techniques are used inconsistently: subjective techniques vary from person to

person, from time to time, and from place to place.  Analog forecasting is an objective method

for weather prediction that makes predictions for a present weather situation based on the

outcomes of similar past weather situations.  Analog forecasting is the weather prediction

technique that we aim to improve.

In subsection 1.5.1, we introduce the airport weather prediction problem addressed in

this thesis.  In subsection 1.5.2, describe the state of the art of artificial intelligence in weather

prediction.  In subsection 1.5.3, we describe the analog forecasting technique and explain how it

depends on retrieval of similar cases.

1.5.1 Airport weather prediction problem

An airport weather prediction is a concise statement of the expected meteorological

conditions at an airport during a specified period (US National Weather Service Aviation
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Weather Center, 1999).  An airport weather prediction is, in meteorology, commonly referred to

as TAF, short for Terminal Aerodrome Forecast.  When pilots give weather forecasts to

passengers before landing, they are reading TAFs.

TAFs are made by expert forecasters.  These experts have general knowledge about how

large scale weather systems behave and specific knowledge about how local scale weather

phenomena behave idiosyncratically at specific airports.  Experts bridge the gap between simple

persistence forecasting and NWP-assisted statistical forecasting on the local scale (Battan 1984).

The three types of forecasts most commonly made by forecasters are TAFs, public

forecasts and marine forecasts.  Of these, TAFs are the most precise and thus the most

challenging type of forecast to make, both in terms of measurable weather conditions and in

terms of timing.  Forecasts of the height of low cloud ceiling are expected to be accurate to

within 100 feet.  Forecasts of the horizontal visibility on the ground, when there is dense

obstruction to visibility, such as fog or snow, are expected to be accurate to within 400 metres.

Forecasts of the time of change from one flying category to another are expected to be accurate

to within one hour.  In comparison, public and marine forecasts can be much less precise.  For

example, in public forecasts, it may be sufficient to predict “variable cloudiness this morning,”

and in marine forecasts, it may be sufficient to predict “fog patches forming this afternoon.”

NAV CANADA 7 measures TAF performance in four ways, with three ceiling and

visibility accuracy statistics 8 and with a speed-of-amendment statistic.  The commonest cause for

amendments is unforecast ceiling or visibility (Stanski 1999).  So, accurate predictions of cloud

ceiling and visibility are clearly important.

In this thesis, we are only directly concerned with the two qualities of TAFs that are

routinely measured by NAV CANADA, which are as follows.

• Accuracy of prediction of flying condition category.  Flying category determined by

both cloud ceiling height and horizontal visibility, two obstructions to vision for

pilots.  The lower the forecast category, the more expensive precautions pilots must

take.

                                                     
7 NAV CANADA is the agency that manages Canada’s air navigation system—including air traffic control,
flight information, weather briefings, airport advisory services and electronic aids to navigation.
8 In the Experiments chapter, we will measure the accuracy of fuzzy k-nn based predictions with the same
statistics that are used by NAV CANADA and described by Stanski et al. (1999).
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• Timeliness of revision.  This describes the length of time from the detection of

weather conditions contradicting TAF (i.e., a forecast “going bust”) and the delivery

of a suitably revised forecast.

So, to improve the quality of airport weather predictions, the three main challenges are:

• Make airport weather forecasts more accurate.

• Make the forecasting process more efficient.

• Make analog forecasting more useful.

1.5.1.1 Motivations for improving airport weather prediction

The motivations for improving the airport weather prediction process are both ergonomic

and economic.  Airport weather forecasting is a difficult task for forecasters.  A system that can

provide forecasters with improved and timely guidance will help to make their work easier and

thus help to make them more effective.

TAFs are economically important to TAF users, providers, and producers.  Airlines use

TAFs.  In Canada, NAV CANADA provides TAFs to airlines and Environment Canada (EC)

produces TAFs for NAV CANADA.

Accurate TAFs increase the safety of airplane passengers and the profitability of airlines.

When “bad weather” 9 is forecast at the destination airport of an airplane, the pilot must load on

extra fuel to ensure the airplane will be able to reach an “alternate airport” in case diversion en

route becomes necessary.  So, reliable forecasts of airport weather—“bad weather” and “good

weather,”  at destinations and alternates—are important for the safety of airplane passengers.

At the same time, airlines do not want airplanes to carry more fuel than necessary for

safety.  It is expensive to fly fuel from one airport to another.  Unused fuel on arrival is an

unwanted expense.  As TAF accuracy increases, the benefit to airlines increases.  Leigh (1995)

studied the of effect of TAF accuracy and concluded that “the economic benefit of a uniform,

hypothetical increase in TAF accuracy of 1% is approximately $1.2 million [Australian] per year

for Qantas international flights into Sydney.”

                                                     
9 By “bad weather,” we mean weather conditions that complicate flying, such as low cloud ceilings or low
visibility.  Low visibility is caused by various factors, such as fog or snow.  Such conditions may slow or
stop airplane traffic, just as fog affects the way motorists drive.  Even though large airplanes can land with
little visibility, such conditions commonly cause expensive traffic problems.  Traffic problems at one airport
can “ripple” through the entire air transportation network and cause scheduling problems for distant
airports.
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Patton (1996) interviewed airplane pilots to determine how they behave in response to

government transportation regulations, airline policies, air traffic flow management, types of

airplanes, and airport weather forecasts.  Pilot behavior is complex to say the least 10, but it is

clear from her investigation that inaccurate, pessimistic airport forecasts cause pilots to load on

extra “unnecessary” fuel and that this directly increases operating costs for airlines.

Thirteen years ago, White (1987) reported that then-recent improvements in forecasts

had enabled airlines served by the U.K. Meteorological Office to significantly reduce fuel

consumption and thereby save an estimated  £50 million per year.

There is a growing market for more accurate and more up-to-the-minute TAFs.  White

(1995), a director of the International Air Transport Association (IATA), identifies important

economy-driven and computer-assisted trends in the aviation industry.  The aviation industry

contributes about $1 trillion [US] per year to the global economy and air travel is growing at a

rate of about 6% per year.  By equipping airplanes with the “latest space-age technology options

to optimize performance,” the IATA has the goal of establishing “an era of ‘free flight,’ meaning

a kind of Utopian environment where aircraft can operate on a totally flexible ‘flight plan’

making optimum use of prevailing weather conditions and forecast updates.  ATC [Air Traffic

Control] will only intervene when necessary to prevent serious loss of separation.”

In Canada alone, the production of TAF’s accounts for about $5,000,000 a year revenue

to Environment Canada (EC). 11  EC is contracted to provide accurate and timely predictions of

ceiling and visibility to NAV CANADA.  A system which could provide useful ceiling and

visibility guidance to make TAF’s, autonomously and using real-time data, would be helpful for

EC.  EC, like all public and private sector agencies, is under continuous pressure to economize

(Doswell and Brooks 1998).  TAFs are expensive to produce, presently costing about $30,000

per year per airport for round-the-clock coverage (Macdonald 1998).

TAFs are a good value for airlines.  To estimate their value, Doyle (1995) developed a

plausible scenario, incorporating several reasonable assumptions, in which forecast service for a

                                                     
10 Patton (1996) represents one common set of pilot decision-making behaviors with a decision tree with
over 100 nodes.
11 All financial figures in this thesis are in Canadian dollars unless stated otherwise.  Environment Canada
currently receives about $24 million in annual revenue from NAV CANADA for the provision of aviation
weather services (Macdonald 1999).  The provision of TAFs accounts for about 20% of this revenue
(Meadows 1997).  The contract between EC and NAV CANADA specifies accuracy and timeliness targets
for TAFs.  The current contract between EC and NAV CANADA will expire in November 2001, after
which time NAV CANADA may seek tenders for aviation services. NAV CANADA is naturally concerned
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set of airports is withdrawn, and calculated what the resultant extra costs would be to Air

Canada.  Extra costs would result because pilots, when filing flight plans, could not use the

affected airports as “alternate” landing sites, and would therefore have to file more distant

airports as alternate, and would therefore have to load on and fly more fuel, which is expensive

to do.  In the scenario, forecast service is withdrawn from nine airports and the estimated

resultant extra costs to Air Canada are $450,000 per year.  The scenario does not take into

account potential savings from not having to pay for TAF production costs of $270,000 per year

(= 9 × $30,000).  But even assuming TAF production costs could be subtracted from additional

fuel-carrying costs, Air Canada would still lose $270,000 per year in the scenario.

The scenario of (Doyle 1995) only accounted for additional fuel-carry costs to airlines

resulting from removal of TAF coverage for alternate airports.  There would certainly be two

other additional costs:

• Diversions to remoter alternate airports would cause additional costs to airlines, such

as lodging, transporting, and placating dissatisfied passengers.

• The loss of TAF coverage at any particular airport would increase planning

difficulties for managers at that particular airport.

1.5.2 State of the art of AI in weather prediction

The state of the art of AI in weather prediction is advancing steadily.  Recently,

Christopherson (1998) surveyed the meteorology literature and identified over 40 AI-

meteorology papers, whereas ten years ago a similar survey by Conway (1989) identified only 4

such papers.12  Operational forecast systems using AI are now being used by the Meteorological

Service of Canada (MSC), the U.S. Army, and the U.S. Navy (Christopherson 1998).  In 1998,

the American Meteorological Society gave its “stamp of approval” to AI by holding its First

Conference on Artificial Intelligence.

Conway (1989) identified three special challenges which meteorology places on AI: 13

                                                                                                                                                             

with minimizing its costs and passing along any savings to its clients and stakeholders.  It is logical to
expect that NAV CANADA will want a better deal when they go to tender.
12 The fact the Conway (1989) found many fewer AI-meteorology papers than Christopherson (1998) is
partly explainable by the facts that: (1) Conway’s survey focused on expert systems, rather than AI, and (2)
some additional meteorology application papers identified by Conway, while “AI-like,” were not billed as
AI.  Even so, it is obvious that AI-meteorology papers are becoming increasingly numerous.
13 The first two challenges are not dealt with directly in this thesis.  Convenience and speed are operational
concerns.  Pattern recognition problems relate mostly to image interpretation—Bezdek and Pal (1992) offer
a large collection of papers which describe how to use fuzzy models for pattern recognition.  We plan to
attend to these special challenges in future related work.
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• Need for convenience and speed.

• Pattern recognition problems.

• Missing and conflicting data.

Fuzzy techniques can assist in all of these challenges.  Forecasters do not stop reasoning

when they miss certain data, or have conflicting or ambiguous data; they continue to reason and

attach an appropriate level of uncertainty to their conclusions.  Conway (1989) explains how

forecasters reason with inconclusive data as follows.

As humans we do not normally reason in numerical terms but prefer vaguer notions of
things being ‘probable’ or ‘likely,’ so the appropriate assignment of probabilities is one of
the main difficulties of encoding human expertise in the form of rules.  How best to deal
with ‘reasoning under uncertainty’ is a subject of continuing research in the expert
systems community.

Instead of trying to assign appropriate probabilities or to encode expertise in rules, which are

difficult tasks, the fuzzy k-nn technique uses the following “vaguer notions.”

• Similar weather situations (cases) evolve similarly.

• Similarity can be evaluated using fuzzy sets.

The driving force behind the development of AI-meteorology systems is the need to deal

more effectively with the immense stream of data that forecasting depends upon.  For example,

we receive about 10 Megabytes per second of remotely sensed data from satellites. 14  NWP also

produces huge amounts of data which needs to be incorporated together with other types of

predictive information into forecasts.  Weather forecasters need improved computer systems and

AI systems to take better advantage of huge and ever-increasing amounts of data.

Klein (Dyer and Moninger 1988) identifies two problems facing developers of expert

systems for weather prediction.  First, the “genuine expert” may be difficult to find or identify

(e.g., two alleged experts may contradict each other).  Second, “there are pitfalls inherent in the

practice of asking the expert to describe the unusual or difficult cases to the exclusion of ordinary

events.”  Uncommon situations may be over-represented by the inference engine.  This would

emulate the occasional tendency of weather forecasters to “over-forecast weather.” 15  Asking a

                                                     
14 Gershon and Miller (1993) estimated, “By the year 2000, satellites deployed by the National Aeronautics
and Space Administration will be transmitting 1 terabyte of data to earth every day.”
15 Forecasters often apply complex forecasting techniques when simple short-tern persistence forecasting
would probably produce more accurate forecasts.  In a comparison of simple persistence forecasts with
human-produced forecasts,  Dallavalle and Dagostaro (1995) report that, “Generally persistence forecasts
appeared to have higher skill than the local forecasts for the 3-hour projection.”  This tendency that people
have to solve simple problems with all the tools at their disposal is referred to as “over-forecasting.”
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forecaster to describe all the difficult situations may lead to an unnecessarily complicated view

of the forecasting process.  CBR, or the fuzzy k-nn technique, can help us to avoid both

problems, first, by reducing dependency on an expert and on knowledge acquisition, and, second,

by giving all past cases an equal chance to affect the prediction for the present case.

Meyer (Frankel et al. 1995) suggests that “AI might have a role in assisting the forecaster

in interpreting the output of numerical models [NWP] and adjusting it for local conditions.”

Mosher (1998) claims that, “Even with the new mesoscale forecast models, the meteorological

forecaster can add value to the [NWP] guidance.  The forecaster can provide unique information

that is not available from [NWP].”  Similarly, AI can combine unique data from complementary

sources, such as airport weather archives and NWP.  Fuzzy logic and the fuzzy k-nn technique

are well-suited to combining and operating on heterogeneous types of data. 16

Christopherson (1998) expresses optimism for the future of AI in meteorology when he

concludes his survey as follows.

The complexity of the modern weather forecasting (more datasets, modern information
processing systems, larger areas of forecasting responsibility, shorter deadlines, more
detailed forecasts), has many attributes which are defined for the application of AI.  …
Forecasters need assistance to more fully utilize this “data flood” and develop the modern
forecasting process.  AI techniques, particularly expert systems and neural networks, offer
solutions to these problems.

Christopherson (1998) qualifies his optimism by describing hurdles for AI acceptance

and use in weather forecasting as follows.

1.5.2.1 Why meteorologists have rarely used artificial intelligence

Based on extensive consultation with forecaster-developers and meteorological

researchers working in AI development, and on a survey of over 40 AI-meteorology systems,

Christopherson (1998) lists probable causes for the limited acceptance and use of AI in

operational forecast offices as follows.

1. “The lack of specific, national level plans to integrate such technologies into the forecast
process.”

2. “The lack of a single computer environment in the field that has the power and flexible access
to integrate diverse, complex or very large, non-static datasets.  This is especially true because

                                                     
16 Fuzzy rules typically operate on variables of different dimensions.  For example, a rule for a furnace
could be: if temperature is low and pressure is low then increase heat.  Temperature and pressure are
expressed with different physical units, but the fuzzy rule operates on equally communicative fuzzy set
representations of the variables.
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domain experts (meteorologists) are rarely system programmers, or academically trained in
AI.”

3. “The AI development process is inherently an engineering process rather than a scientific
investigation.  Meteorologists are trained to do the latter and commonly avoid or even scorn
the former.”

4. “AI is often non-linear (subtle changes in input yield large changes in output).  It is also not
based on a physical model of the problem domain.  This deters meteorologists, who want
algorithmic solutions that model the atmosphere.”

5. “While AI techniques are a broad and versatile technology, most applications solve narrow
problems.  Changing anything requires an entire developmental re-work to regain any skill and
may require substantial changes in system design.”

6. “The often specific nature of AI solutions suggest they are best used at the [regional] forecast
office rather than the national center.  However, the forecast office has traditionally been ill
equipped to work with sufficiently detailed data sets and there has been a lack of sufficiently
detailed data sets.”

7. “AI will not be accepted until it is developed, taught, and used in university and college
meteorology programs and government research laboratories and training facilities.”

Considering points number 3 and 4 together helps to explain why, in meteorological

research, interest in the development of the analog forecasting technique has been almost

completely displaced by interest in computer modeling (NWP).  Over the past 30 years, NWP

has come to dominate many meteorological research agendas. 17  At the same time, little

innovation has been attempted with analog forecasting techniques.  All of the references to

analog forecasting in the meteorological literature of the past 30 years rely heavily on statistical

techniques, techniques that have hardly changed over the past 30 years. 18

1.5.2.2 Why meteorologists need decision support systems

By interviewing forecasters, Kumar et al. (1994) found four reasons why forecasters

need decision support systems, which are paraphrased as follows.

• Forecasters are challenged in their present work setting to absorb, comprehend, and

remember a large amount of information which arrives in a continuous stream.  Tight

                                                     
17  Dyer and Moninger (1988), from a workshop on AI research in environmental sciences, note  that “One
speaker said that weather forecasting R&D in the 1940’s and 1950’s shared much in common with the
current AI thrusts, but that research was essentially shelved for 30 years as numerical weather prediction
(NWP) took prominence.”.  Frankel et al. (1993), from another workshop on AI needs in meteorology, note
that a representative of the Meteorological Service of Canada emphasized the prominence of NWP: “A
major thrust in Canadian meteorological research is the continued development of world class NWP
models.”
18 The section Additional references on analog forecasting in meteorology lists meteorology papers which
describe the challenges of implementing analog forecasting.
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deadlines exacerbate the problem.  As a result, forecasters sometimes make “errors

in judgment.”

• It is difficult to discover through forecasting experience how to make near-optimal

forecasts.

• Forecasters themselves express uncertainty about how to best use available forecast

guidance information.  Even experienced forecasters do not know how to best use

guidance information.

• Some forecast verification statistics do not show any improvement in forecast skills

over recent decades despite improvements in the quality and quantity of guidance

information over the same time interval.

Kumar et al. (1994) used the machine learning technique of inductive learning to obtain

prediction rules.  These prediction rules were the basis of a system to predict 24-hour rainfall in

Melbourne City, Australia.  Their problem was to make categorical predictions of rainfall during

a 24-hour period in Melbourne City Australia.  They had a 30-year set.  They used up to 129

attributes.  Of these attributes, 59 were from NWP prognostic fields.  So, they combined

climatological and NWP guidance.  They used inductive learning programs to build decision

trees. 19  The output of the learning programs was represented as sets of rules and forecasters

were asked to comment on these rules.

According to the forecasters, even though the induction methods performed slightly better
than the current prediction method, it is much easier for the forecasters to understand and
use the automatically generated symbolic production rules by the induction method than
the current complex statistical method, to perform the forecasting operations. 20

Compared to statistical methods, machine learning has a good explanation capability, a desired

quality in AI systems.  It promotes user acceptance.  Given a choice, users seem to prefer

“transparent systems” over “black boxes”—scrutability over inscrutability.  The fuzzy k-nn

method should appeal to users in the same way.  Its solutions are composed from actual cases—

cases which can be presented to users to scrutinize if they so desire.

                                                     
19 Kumar et al. (1994) used the commercially available packages C4.5 and ID3.  The system-specific details
of how their systems built decision trees are not relevant in this thesis.  What is relevant is that they used
decision trees that split data into crisp sets.  Our fuzzy k-nn algorithm does not split data into crisp sets and,
therefore, appears to be unique among weather forecasting applications.
20 Apparently, from (Kumar et al. 1994), the current prediction method for Melbourne is a sort of “man-
machine mix.”  Forecasters appraise, select, and use whatever information or guidance is available, and the
most relied-upon guidance is statistical (climatology plus NWP).
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1.5.3 Analog forecasting: An empirical weather prediction technique that depends on

retrieval of similar cases

Weather patterns repeat themselves—this is the basic idea behind the weather prediction

technique called analog forecasting.  Analog forecasting is a meteorological form of CBR.

Analog forecasting is simple in theory: make a prediction for the current situation based on the

outcome of similar past situations.  However, development of analog forecasting systems is

challenging in practice.

Analog forecasting is by far the oldest weather prediction technique.  Useful weather

sayings are based on recurring patterns of weather, and using recurring patterns of weather is

essentially analog forecasting, thus useful weather sayings are a form of analog forecasting.  For

example, the following familiar saying is at least 2000 years old. 21

Red sky in the morning, sailors take warning.
Red sky at night, sailors delight.  (Anonymous)

The Online Guide to Weather Forecasting 22 describes analog forecasting as follows.

It involves examining today’s forecast scenario and remembering a day in the past when
the weather scenario looked very similar (an analog).  The forecaster would predict that
the weather in this forecast will behave the same as it did in the past.  … The analog
method is difficult to use because it is virtually impossible to find a perfect analog.
Various weather features rarely align themselves in the same locations they were in the
previous time.  Even small differences between the current time and the analog can lead
to very different results.  However, as time passes and more weather data is archived, the
chances of finding a ‘good match’ analog for the current weather situation should
improve, and so should analog forecasts.

In a practical sense, the fuzzy k-nn method learns as cases accumulate.  As databases of cases

increase in size, the chance of finding good analogs for any given weather situation increases.

To use analog forecasting, we must find good analogs and we must use these analogs

appropriately.  The two main challenges are:

• Develop a good similarity metric.

• Determine confidence intervals and practical time scales for analog predictions.

                                                     
21 “When it is evening, ye say, ‘It will be fair weather: for the sky is red.’ And in the morning, ‘It will be
stormy today, for the sky is red and lowering.’” (Matthew 16:2-3)
22 The above description of analog forecasting is from "Online Guide to Weather Forecasting" at the
University of Illinois Department of Atmospheric Sciences
(http://ww2010.atmos.uiuc.edu/(Gl)/guides/mtr/fcst/mth/oth.rxml, downloaded on March 25, 1999).
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1.5.3.1 Investigations into feasibility of analog forecasting uncovered chaos

The work of Edward Lorenz is seminal in the modern “science of chaos.”  In the past,

chaotic commonly meant disorder, uncertainty or randomness.  Increasingly, chaotic describes a

special type of order observed in systems in real-world areas such as physics, economics,

statistics, chemistry, engineering, biology, and medicine (Abarbanel et al. 1993).

Lorenz (1963, 1969b, 1977, and 1993) tested the feasibility of using models, based on

either analog forecasting or on physical equations of the atmosphere, to produce long-range

weather forecasts.  Lorenz reasoned that because weather obeys deterministic physical laws, if

one could initialize a weather model perfectly, then deterministic long-range weather forecasting

would be possible.  He noticed that tiny errors in model initializations grow exponentially into

large errors as models run forward in time.  In the real world, such errors are inevitable because

of practical limitations on weather measurement precision and accuracy.  Model initialization

errors limit the time range of both analog forecasting systems and numerical weather prediction

systems.  Lorenz (1963) concluded that the results of his experiments indicated that:

prediction of the sufficiently distant future is impossible by any method, unless the
present conditions are known exactly.  In view of the inevitable inaccuracy and
incompleteness of weather observations, precise very-long-range forecasting would seem
to be non-existent.

Lorenz explained what his results implied for the feasibility of long-range analog

forecasting: long-range, global weather prediction is infeasible because the atmosphere is

sensitively dependent on initial conditions. 23  For deterministic weather prediction to be

possible, one would have to find a perfect analog for the present case.  However, because the

global atmosphere exists in innumerable states, there are two impediments for analog forecasting.

First, it is highly unlikely that perfect analogs ever exist. 24  Second, even if perfect analogs did

exist, it is technically impossible to measure the atmosphere to the required level of precision.

Lorenz (1963) noted that “these conclusions do not depend upon whether or not the atmosphere

is deterministic.”  Today, Lorenz’ conclusions are accepted in meteorology.

                                                     
23 In Lorenz' experiments, “long-term” pertained to prediction of upper atmospheric fields days in advance.
Aviation weather changes more rapidly, so in the context of this thesis, predictions six to twelve hours in
advance can be thought of as “long-term.”
24 Van den Dool (1994) estimated that it would take on the order of “1030 years to find analogues that match
over the entire Northern Hemisphere 500 mb height field to within current observational error.”  The 500
mb (millibar) height field is a pressure field in the upper atmosphere, at about 6 km altitude, which is
commonly examined by weather forecasters.
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Reflecting on over three decades of research, Lorenz (1993) concludes, “We are left with

the strong impression that the atmosphere is chaotic, but we would like additional evidence.”

We assume that weather is chaotic and that it behaves accordingly, that is, that the flow of

weather is sensitively dependent on initial conditions.

1.5.3.2 Temporal cases are chaotic trajectories

A temporal case is a short segment of a long record of a multidimensional, real-world

process.  In this thesis, and in general, a temporal case can describe any recorded, real-world

process.  In theory, if two distinct temporal cases are identical, then the sequences of events

following those two cases will be identical.  If one of those cases describes the present situation,

then the problem of prediction is deterministic—one simply predicts a recurrence of the sequence

of events that followed the previous identical case.  However, in reality, identical cases are

usually rare and case-based prediction is seldom so simple.  There are fundamental practical

limitations on case-based prediction method.  These limitations are described in this section.

These limitations will be reiterated in subsection 2.2.1 (pg. 48) when we review a fuzzy logic

based formalism for deterministic CBR, proposed by Dubois et al. (1997), that is based on the

principle: “The more similar are the problem description attributes, the more similar are the

outcome attributes.”

In weather prediction, the method closest to CBR is analog forecasting.  Analog

forecasting is based on the principle that the more similar the current weather situation is to a

past weather situation, the more similar the upcoming weather will be to that which followed the

past weather situation.  In its strongest form, this principle implies deterministic weather

prediction.

In the real-world, chaos prevents determinism.  Chaos imposes fundamental limitations

on the applicability of case-based reasoning for predicting physical processes.  Small differences

between the initial states of two systems tend to grow exponentially over time and the two

systems become increasingly dissimilar.

A good way to appreciate chaos, and the implications of a system being sensitively

dependent on initial conditions, is with the following demonstration by Lorenz (1993).  Suppose

a snowboard starts sliding down a bumpy ski slope from a certain position at a certain velocity.

The snowboard slides freely down the slope, curving left and right as it swerves away from

bumps on the slope.  A number of such trajectories are illustrated in Figure 5.  Each such

trajectory is a specific temporal case.
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The effects of varying initial conditions on the trajectory was tested by Lorenz with

computer simulations.  Each snowboard began on the starting line with the same velocity, both

forwards and sideways components.  The only condition made to vary was x, the position of the

snowboard on the starting line.  In the first set of trials, initial displacements were incremented

by 10 cm, as shown in Figure 5 (a).  In the second set of trials, initial displacements were

incremented by only 1 mm, as shown in Figure 5 (b).

(a) Initial displacements

spaced at 10 cm intervals.

(b) Initial displacements

spaced at 1 mm intervals.

Figure 5.  Chaotic: sensitively dependent on initial conditions.  Each figure shows the paths of

seven snowboards crossing a starting line with varying initial displacements and identical

velocities.  Diamonds in Figure 5 (a) indicate centers of bumps in snow.  (Figures are copied

from (Lorenz 1993) with kind permission of the University of Washington Press.)



30

The results clearly show how the trajectory is sensitively dependent on initial conditions.

The more similar the initial conditions of two temporal cases are, the more similar the outcomes

are.  Given the initial coordinates of a ski on the slope and a case base of past complete

trajectories, it is possible to predict the path of the ski using an analog forecasting method:  Make

predictions based on the outcomes of similar past situations.

The snowboard analogy shows how analog forecasting works and how it fails.

Differences between the states of two systems, which are initially similar, tend to grow

exponentially over time.  This implies that there is a practical limit on the time range of analog

forecasting.  Comparing Figure 5 (a) with Figure 5 (b), note that even though the initial

conditions in (b) are 100 times closer than in (a), the tracks in (b) remain similar for only about

twice the distance as in (a).  The tracks in (a) diverge sharply after about 20 metres and the tracks

in (b) diverge sharply after about 40 metres.  Small initial differences tend to grow exponentially

over time.  So, in a chaotic environment, any attempt to improve analog forecasting by using

increasingly similar cases will yield diminishing returns.

Confidence in the predictions depends on the distribution of the analogs.  So long as the

analogs are packed together, the predictions are precise and reliable.  After the analogs fan apart,

the predictions are vague and unreliable.

To use an analog forecasting method appropriately, the main limitation to recognize is

the practical time range.  We must identify the point in time when analogs become so dissimilar

from each other that analog forecasts become unreliable.  In meteorology, this concept is referred

to as a “limit of predictability.”

1.5.3.3 State of the art of chaotic data analysis

This subsection simply highlights some observations made by Abarbanel et al. (1993) in

a review entitled The analysis of observed chaotic data in physical systems.  These observations

are both motivational and instructive for this thesis.

• “In a sense we shall describe new methods for the analysis of time series, but on another
level, we shall be providing handles for the investigation and exploitation of aspects of
physical processes that could simply be dismissed as ‘stochastic’ or random when seen
with different tools.  Indeed the view we take in this review is that chaos is not an aspect
of physical systems to be located and discarded, but is an attribute of physical behavior
that is quite common and whose utilization for science and technology is just beginning.
The tools we discuss here are likely also to be just the beginning of what we can hope to
bring to bear in the understating and use of this remarkable feature of physical dynamics.”

• “This article is designed to bring scientists and engineers a familiarity with developments
in the area of model building based on signals from nonlinear systems.  The key fact that
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makes this pursuit qualitatively different from conventional time series analysis is that,
because of the nonlinearity of the systems involved, the familiar and critical tool of
Fourier analysis does very little, if any, good in the subject.  The Fourier transform of a
linear system changes what might be a tedious set of differential equations into an
algebraic problem where decades of matrix analysis can be brought to bear.  Fourier
analysis of nonlinear systems turns differential equations in time into integrals in
frequency space involving convolutions among the Fourier transforms of the dependent
variables.  This is rarely an improvement, so Fourier models are to be discounted at the
outset, though as an initial window through which to view the data, they may prove
useful.”

• “It is not uncommon to see attempts to overcome the limitations imposed by small data
sets by measuring the system more frequently.  … this is not an effective tactic.  The raw
number of points is not what matters; it is the number of trajectory segments, how many
different times any particular locale of state space is visited by an evolving trajectory, that
counts.”

• “Our task is to find points in our sample library that are very close together and watch
how trajectories specified by following points separate.  In locating the initial neighboring
points we must not consider points that are from the same temporal segment of the
library.”

• [Regarding local modelling]  “We now assume that our data are embedded in an
appropriate phase space, and we have determined the dimension of the model.  [25]  The
problem is now to reconstruct the deterministic rule underlying the data.  We start our
discussion with the simplest and earliest nonlinear method of local forecasting, which was
suggested by E.  Lorenz (1969b).  Let us propose to predict the values of y(k+1) knowing
that a long time series of y(j) for j ≤ k.  In the ‘method of analogs’ we find the nearest
neighbor to the current value of y(k) say, y(m) and then assume that y(m+1) is the
predicted value for y(k+1).  This is pure persistence and is not much of a model.” 26  To
improve the quality of this prediction, Abarbanel et al. (1993) suggest to take a collection
of near neighbors of the point y(k) and predict an averaged value of their images, and
suggest to weight the neighbors to provide a larger contribution from close points.

• “Numerical results are critical to the study of nonlinear systems that have chaotic
behavior.  Indeed, computation plays a larger role in such studies than is traditional in
many parts of the physics literature.  Progress such as that reported throughout this review
rests heavily on the ability to compute rapidly, and as such would not have been possible

                                                     
25 For this thesis, we do not need to concern ourselves with phase space and dimension determination
problems because we: 1) have a large, representative record of a multidimensional time series, 2) know
many of the relevant dimensions, 3) intend to straightforwardly perform analog forecasting (Lorenz 1969a),
4) do not intend to model the signal into uncharted space, and 5) do not intend to model the signal far into
the future.  We will simply collect an ensemble of analog trajectories and make reasonable inferences about
the course and the predictability of short-term conditions.  Nevertheless, the reader may be interested in the
following technical chaos-related terms.  A phase space is a coordinate space in which the coordinates are
temporally related (e.g., x and dx/dt).  Such a space can specify the state of a dynamical system.  For
example, simple harmonic motion is a circle in the phase plane.  The dimension of the model is the number
of coordinates needed to specify a state.  When analyzing single scalar signals from systems with an
unknown number of dimensions of freedom, a number supposedly greater than 1, some mathematical
techniques, which are outside of the scope of this thesis, are necessary to estimate the dimension.  For
example, reconstructing the phase space through the technique of time delay embedding is a systematic way
of transforming scalar data to a multidimensional phase space (Aberbanel et al. 1993).
26 Pure persistence is not much of a model but it is effective nonetheless (see our Additional references on
analog forecasting in meteorology).  Interestingly, proponents of CBR often cite the model-free quality of
CBR as an advantage.  Models are difficult to construct in areas where domain theory is weak or domain
experts are unclear.
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a decade ago.  The subject reviewed here is almost ‘experimental’ in that sense through its
reliance on computers as an instrument for its study.  This bodes well for further analysis
of chaos and its physical manifestations , since no one can expect even more powerful
computers to be available on a continuing basis.”

• “It would be enormously useful, for example, in the analysis of data to have some
estimate of the error in all the conclusions arising from finite data sets as well as from
numerical, experimental, or instrumental uncertainty.”

• “The discovery of temporal chaos in physical systems is a ‘finished topic of research,’ we
believe.  Many physical systems have been shown to exhibit chaotic orbits, and we are
certain many more will be found.  It is no longer enough, however, to have good chaos,
one must move on and extract good physics out of it.”

We intend to put “good physics” into the analog forecasting method by equipping fuzzy

sets to measure importantly close physical dimensions.

To implement an analog forecasting method, the main problem to solve is to find good

analogs.  Somehow we must select past cases whose attributes are most similar to those of a new,

partial, and (in the case of complex natural phenomena, such as weather) probably unique case.

1.5.3.4 Persistence climatology: Analog forecasting with built-in constraints

“Persistence climatology is widely recognized as a formidable benchmark for very short

range prediction of ceiling and visibility [which are critical attributes of airport weather]”

(Vislocky and Fritsch 1997).

Persistence climatology (PC) is a weather prediction technique that combines the best

qualities of two basic weather prediction techniques: persistence forecasting and climatological

forecasting.  PC is a form of analog forecasting, and analog forecasting is meteorological version

of CBR.

Huschke (1959) defines persistence forecast as: “a forecast that the future weather

conditions will be the same as the present conditions.”  Huschke (1959) defines climatological

forecast as: ”A weather forecast based upon the climate of a region instead of upon the dynamic

implications of the current weather.  Consideration may be given to the climatic behavior of such

synoptic weather features as cyclones and anticyclones, fronts, the jet stream, etc.”  The time of

year (i.e., Julian day) is a condition that strongly determines the evolution of weather, on both the

large scale and the local scale. 27

                                                     
27 Barry and Chorley (1968) explain large-scale weather patterns correlate to particular dates:

Recurrent weather spells about a particular date (singularities), such as the tendency for
anticyclone weather in mid-September, have been recognized in Britain and major
seasonal trends in occurrence of airflow regimes can be used to define five natural
seasons [in Britain.] … Three major North American singularities concern the advent of
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Martin (1972) explains how PC combines persistence and climatology to forecast cloud

ceiling and visibility.  We summarize his description as follows.

The basic objective of PC is to answer the question: In similar past situations, what were
the outcomes 1, 2, 3,...  hours later?  PC is a meteorological application of joint
probability.  For example, suppose that it is 6 am in June and the airport is “socked in” in
fog.  The flying category is the lowest possible, Category 1.  Using PC, one tabulates
before-the-fact probabilities (prior probabilities) to forecast for such a situation.  The
database is searched for all instances of {June, 6 am, flying category 1}, the flying
categories during the subsequent hours are tabulated, and probabilities were prepared
accordingly.

The elements of PC forecasting are shown in Figure 6.  For purposes of illustration, the

weather data are simplified. 28  Only four attributes are shown.  In practical systems, many more

attributes may be used.  The present case is the incomplete present case that we want to predict

for.  The predictands are the missing parts of the present case, what we want to predict.  The past

case is an archived case which nearly matches the known attributes and auxiliary predictors of

the present case.  The auxiliary predictors are information about the present case available from

sources other than direct observation, such as NWP or human estimation.

                                                                                                                                                             

spring in early March, the midsummer northward displacement of the sub tropical high-
pressure cell, and the Indian summer of September–October.

28 The weather data are from weather observations (METAR code) for Halifax International Airport for the
period from 00:00 to 12:00 UTC September 12, 1999.
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Because analog forecasting is fundamentally different from NWP, it complements NWP.

Therefore, analog forecasting has potential applicability for postprocessing of NWP output.

Postprocessing of NWP output is the process of combining NWP output with complementary

information and forecasting techniques. 30

                                                     
29 We assume that the principle of analog forecasting is applicable and, therefore, assume that the weather
archive, which is composed of 13,149 days of past cases, contains analogs for the present case.  For

present case past case
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(°C)
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(degrees)

speed (kts)

cloud
ceiling

(m)

visibilit
y

(m)

dew
point
temp.

(°C)

wind
direction
(degrees)

speed (kts)
00h 210 2400 20 190° 10 90 2400 20 190° 12
01h 90 2400 20 200° 11 120 2400 20 200° 11
02h 120 12800 20 230° 11 120 3200 20 210° 10
03h 150 3200 20 230°  8 150 4800 20 220°  9
04h 210 16000 19 210°  9 210 6000 19 230°  8
05h 300 16000 18 320°  6 240 7200 18 320°  7
06h 240 19200 18 320°  5 300 19200 18 320°  6
07h unlimited 24000 17 330°  5 4000 24000 17 330°  6
08h 7500 24000 16 330°  6 7500 24000 16 320°  6
09h 7500 16000 16 310°  7 7500 24000 16 310°  6
10h 7500 19200 15 290°  5 7500 24000 15 300°  6
11h 7500 19200 15 290°  9 7500 24000 15 290°  6
12h 7500 24000 14 290°  6 7500 24000 14 290°  6

↑ ↑ ↑ ↑  ↑
These two are

predictands
These three may be

anticipated with
auxiliary predictors

In a forecast setting, grayed-out values are
not known.  They are objects of prediction.

Figure 6.  Persistence climatology (PC) bases predictions for the present case on the outcomes

of similar past cases.  For example, two simplified series of hourly weather observations are

listed.  The present case is based on actual observations from Halifax International Airport

(from September 12, 1999).  The past case is a hypothetical analogous case. 29  PC makes

predictions from such analogous past cases.  In an actual forecast setting, the attributes of the

present case would only be known up until 04h, whereas attributes of the analogous past case

are known for the entire time span.  Note that after 04h, in both cases case, the wind veers

suddenly to northwest, dew point temperatures fall sharply, and low cloud clears quickly.

Certain near-term attributes of the present case, such as dew point temperature and wind, may

anticipated using auxiliary predictors from existing objective prediction techniques (e.g.,

numerical weather prediction).
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1.5.3.5 Fuzzy k-nn based forecasting: Analog forecasting without built-in constraints

The fuzzy k-nn technique can free persistence climatology (PC) from two of its main

limitations and thus make PC more flexible and better able to take advantage of available data.

The two limitations on the flexibility of previous PC systems are:

• Previous PC systems treat weather as if it was categorical, (and therefore)

• Previous PC systems can only use a very limited set of predictors.

One problem with representing weather cases according to the membership of those

cases’ attributes in crisp categories (as all previous PC systems do) is that such categories may

not accurately reflect the level of similarity between cases, as illustrated in Figure 7.

Another problem with using crisp categories to represent weather cases is that, as the

number of stratifying conditions increases and as specified events become rarer, instances for

                                                                                                                                                             

purposes of illustration, in Figure 6, we contrive a simple analog.  However, in our experiments, we will
only compare actual cases.
30 Cats and Wolters (1996) describe postprocessing of NWP as follows: “Modern numerical weather
forecasting systems have three basic components: an analysis unit, a forecast model, and a postprocessor. …
In the postprocessing step, the relevant weather phenomena (for example wind speed at 10 m height are
calculated from the model variables.”  In our case, the relevant weather phenomena are cloud ceiling height
and horizontal visibility.
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Figure 7.  Crisp categories may not accurately reflect

the level of similarity between cases.  Such

categorization may produce counterintuitive results.  For

example, the values of points A and B are similar and

the values of points B and C are dissimilar, but points A

and B fall into different categories and points B and C

fall into the same category.
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statistical tabulation may not exist.  Martin (1972) attributes the problem to “rare events,” but, to

be more exact, the problem is that the more precise a crisp range query is, the greater the chance

of finding no match.  Therefore, previous PC systems have only used, or taken advantage of, a

limited number of predictors so as not to produce “empty bins.”  31

All gardeners are familiar with crisp climate classification schemes, or “growing zones,”

and understand how such schemes are simplistic and potentially misleading. 32  McBratney and

Moore (1985) applied fuzzy logic to the problem of climatic classification.  From their results,

they found:

it appears the fuzzy sets approach has a useful place in climatic classification,” [and
suggest three reasons for the efficacy of fuzzy sets approach are that it] is realistic,
flexible, and may offer better approach to information transfer than does the classification
of climate into discrete sets.

We agree.  McBratney and Moore (1985) emphasize that climate variables are continuous and

that boundaries, if they exist, are fuzzy.  They suggest that

the apparent arbitrariness of [conventional, crisp] climate classification suggests an
alternative approach would be the storage of climatic data in easily accessible form and
the generation of a specific ‘classification’ for a particular purpose when it arises, using
multivariate techniques.

Our fuzzy k-nn algorithm follows this suggestion to gear the algorithm for a particular

purpose.  It searches the stored weather observations and retrieves the k-nn which most belong to

the momentarily most important class of weather observations, a class whose centre is defined by

the features of the current weather situation, the latest series of airport weather observations.

We reviewed the meteorological literature on airport weather prediction systems and

found only two systems that demonstrated accurate prediction results comparable to the

                                                     
31 This is reminiscent of the “accuracy-versus-precision” tradeoff in weather prediction.  That is, the more
precise a prediction is, the less chance there is that it will be accurate.  In the case of data base querying, the
more precise a query is, the less chance there is that a matching item will be found.
32 In a gardening encyclopedia, Bradley and Ellis (1992) explain “growing zones” as follows:  “In order to
help growers determine which plants are best for their regions, the USDA’s [US Department of Agriculture]
Agricultural Research Service developed a Plant Hardiness Zone Map. … It divides the United States and
southern Canada into 11 climatic zones, based on the average annual minimum temperature for each zone.
Zone 1 is the coldest, most northerly region, and Zone 11 is the warmest, most southerly. … Keep in mind
that there are climatic variations within each region and even within each garden.  Your garden’s immediate
climate may be different from that of the region overall.  Many factors—altitude, wind exposure, proximity
to bodies of water, terrain, and shade—can cause variations in growing conditions by as much as two zones
in either direction.”  Thus, for example, although general growing conditions in Nova Scotia are Zone 5,
local growing conditions may range from Zone 3 to Zone 7.
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benchmark prediction technique of persistence forecasting. 33  Both systems are based on multi-

linear regression and are described as follows.

• Wilson and Sarrazin (1989) describe a refinement of PC called “SHORT” (the name

is unexplained) that performs very well.  SHORT describes the climatology of

changes in aviation weather parameters based on 30 years of record.  SHORT is

more skillful than “conditional climatology” at all forecast ranges.  SHORT is

apparently still unrivalled by any other category-based PC system and is undergoing

continued development.

• Vislocky and Fritsch (1997) describe a refinement of PC called “OBS” (the name is

unexplained) that performs very well.  What is special about OBS is that it

incorporates observational weather data from surrounding airports, as well as from

the particular airport in question, into the prediction process for the airport in

question.  Considerable skill is attributed to their unique inclusion of such highly

relevant, predictive information.  The authors suggest that further gains can be made

in the future by somehow including more predictive information from other sources.

Despite their obvious skill, both systems have what we perceive to be design flaws which

are inherent in all category-based and thus category-constrained PC systems to date.  Wilson and

Sarrazin (1989) explain, in SHORT, “all predictands and predictors are categorized,” and

proceed to illuminate two problems arising from the use of categorization.  First, there is not a

single, consistent method to choose “best” categories.  The “best” categories vary from one

situation to another.

Many strategies are available for choosing ‘best’ categories, the definition of ‘best’
depending on the use of the forecast.  (Wilson and Sarrazin, 1989)

Second, categorization loses detailed information.

The categorization procedure is considered necessary because the [multivariate linear
regression] procedure produces large volumes of probability forecasts for each station and
projection time.  This procedure effectively summarizes the information but also makes
the category decision for the forecaster and loses the detailed information available from
probabilities.  (Wilson and Sarrazin, 1989)

                                                     
33 There are numerous airport weather prediction systems described in the literature (e.g., Clarke 1995;
Garner 1995; Gollvik and Olsson 1993; Keller et al. 1995; Kilpinen 1993; Kumar et al. 1994; Meyer 1995;
Porter and Seaman 1995; Shakina et al. 1993; Warner and Stoelinga 1995; and Whiffen 1993), but none of
these works claim to be as nearly as skillful, significant, or practical as the two referred to above, SHORT
(Wilson and Sarrazin 1989) and OBS (Vislocky and Fritsch 1997).
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When Wilson and Sarrazin (1989) speak of loss of detailed information, they refer only to loss at

the output stage, but the same sort of loss occurs at the input stage.  SHORT processes data in

three stages:

1. It receives many detailed cases and converts them into categories, thus discarding

detailed information about similarity between weather cases at the input stage.

2. It develops regression equations based on categorical representations of cases.

3. It outputs the results of those operations into categorical predictions, thus losing the

detailed information available from probabilities calculated during stage 2.

Wilson and Sarrazin (1989) recommend trying new graphical output procedures to

recover some of the information lost at the output stage.  But the detailed information about

similarity between cases lost at the input stage to multivariate linear regression due to

categorization is irretrievable.  Details that could enable the measurement of level of similarity of

analogous cases are discarded through categorization.

Another problem inherent in both SHORT (Wilson and Sarrazin 1989) and OBS

(Vislocky and Fritsch 1997) is that they do not incorporate into the prediction scheme numerous

real-time predictors, such as data from surrounding weather-measuring stations or from upper air

stations.  There is a practical limit on the number of combinations of attributes that statistics can

be prepared for.  The size of the equation set tends to grow exponentially with the inclusion of

each new attribute.

In contrast, the fuzzy k-nn system grows linearly in complexity as new attributes are

added (illustrated in Figure 9, page 64).  Thus, it can potentially take better advantage of many

valuable real-time predictors—variable, situation-specific predictors that are relevant to current

weather.  Operationally, forecasters know more than what month it is and what time of day it is.

They have additional knowledge about what the “problem of the day” is.  For example, if a cold

front is due to pass through the region during a forecaster’s shift, then all weather timings hinge

on the time of passage of a cold front.  “Timing the cold front” and its associated wind shift is the

most critical task for an aviation forecaster on such a day.

Timing of fog and ceiling lifting often depends on the passage of a cold front.  For

instance, forecasters may determine, either manually or automatically, that wind direction will

shift from 160° to 320° three hours after forecast time.  Fuzzy k-nn analog forecasting can begin

with that information.  It searches the record of over 300,000 consecutive hourly airport reports

for the few most similar situations in the past, similar according to all the commonly known
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attributes plus the very predictive information about wind direction shift three hours hence.

Those few analogs are most relevant and excellent for prediction.

Presently, with PC, there is not an easy way to specify such a peculiar set of conditions

as {June, 6 am, 1/4SM FG, OVC001, wind shift from 160° to 320° three hours hence}, because

PC must be prepared before-the-fact, using only a limited set of commonly used predictors.

Information about such peculiar cases, contained in the database, is not presently made available

to forecasters.  It is impractical to prepare PC statistics for the full range of possible situations

and relevant predictors.  Whereas, the fuzzy k-nn technique can select the k-nearest neighbors,

nearest in terms of a set of critical attributes (i.e., predictors) which can be known only at

forecast time.

From a user's perspective, fuzzy k-nn is flexible.  A meteorologist colleague of ours

described it as “custom climatology on-the-fly.”  A system can defer important decisions until

run-time.  A forecaster invests considerable effort in timing a cold front.  The forecaster could

use “real-time persistence climatology” simply by entering the precise expected wind-shift

attributes into a system, let the system automatically supply the other predictors (e.g., time of

day, month, surface observations, NWP), and have the system output the likeliest trend of ceiling

and visibility using all the available data and the best analogs.

To the best of our knowledge, “pure analog forecasting” has never before been used to

produce airport weather forecasts.  By pure analog forecasting, we mean making forecasts based

on a few actual most similar cases, similar according to the salient attributes of the present case

and selected from an entire archive, rather than making forecasts based on statistically derived

probabilities, probabilities that are determined according to general attributes of many cases.

All work to date to automate airport weather prediction has used some combination of all

of the three methods: climatology, numerical weather prediction (NWP), and statistics.

Climatology describes the past behavior of specific weather conditions at an airport.  NWP

provides guidance about near-term future conditions.  Statistics let us calculate conditional

probabilities.  A system combining these three methods is often referred to as model output

statistics (MOS). 34  All such MOS work is based on two assumptions:

                                                     
34 Strictly speaking, "MOS" has a more restricted meaning in meteorology.  Depending upon the approach
towards climatology, NWP, and statistics, a hybrid method may be referred to differently, e.g., “persistence
climatology” (Martin 1972), “SHORT” (Wilson and Sarrazin 1989), “OBS” (Vislocky and Fritsch 1997),
and “perfect prog” (Stern and Parkyn 1999) to name just a few.  But such meteorological semantics are
beside the point.  The point is that all serious attempts to automate airport weather prediction:

• Combine three basic prediction methods: climatology, NWP, and statistics.
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1. Analog forecasting: good analogs make good predictions.  Similar weather

situations, patterns and sequences, behave similarly.

2. Similarity can be adequately described according to membership in a few, arbitrary,

crisp, predefined categories.

We will use the first assumption because we believe it's a principle with wide

applicability.  However, we will not use the second assumption.  We claim that it is a

compromise, an oversimplification of data, that has become increasingly unnecessary.  In the

past, with relatively limited computing power, to process large weather databases, it was

necessary to greatly condense them, to preprocess them before the reception of up-to-the-minute

predictive information.  The fuzzy k-nn method can process large databases efficiently after the

receiving the specific details of a new case and thereby perform unconstrained analog

forecasting.

1.5.3.6 Fuzzy k-nn algorithm’s improvement to analog forecasting

Our fuzzy k-nn algorithm can improve analog forecasting because the flow of weather is

sensitively dependent on initial conditions.  The fuzzy k-nn identifies the most similar cases

regardless of categories.  Previous analog forecasting techniques used predefined categories and

thus must have failed to measure sensitively dependent conditions.

Analog forecasting of aviation weather using the fuzzy k-nn algorithm is more flexible

and, thus, potentially more useful than previous category-based analog forecasting systems.

Previous analog forecasting systems: assume a limited number of predictors, represent

attributes of cases according to their membership in categories, and prepare probabilities of

categorical events accordingly.  Whereas fuzzy k-nn based analog forecasting can: use any

predictors which are available at run-time, represent attributes of cases with their full measured

precision (thereby preserving information that improves similarity measurement), and prepare

analog predictions based on a few individually-weighted, most-similar temporal cases.

                                                                                                                                                             

• Implicitly use the analog forecasting principle.  For matching analogs, climatology gives
hindsight about attributes of past analogous cases and NWP gives foresight about certain
attributes of the present case.  Statistics categorizes such attributes of past and present cases
and makes inferences, or predictions.

• And, prior to this thesis, implicitly assume that similarity, of new and unique weather cases
with old weather cases, can be adequately described according to membership in a few,
arbitrary, crisp, predefined, mediating categories, rather than by direct case-to-case
comparison.
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Using the fuzzy k-nn method frees us from the dependence on the assumption (implicit in

all previous attempts to automate airport weather prediction) that similarity can be adequately

described according to membership of case attributes in a few, arbitrary, crisp, predefined

categories.  The consequence of categorization of case attributes—when categories are defined

for general situations, without regard to specific cases or case-specific contextual information—

is that precision of distance measurement between analogous cases is reduced.  Categorization is

“lossy,” so to speak.  However, attempts to circumvent the problem of lossy categorization by

creating more and finer categories simply leads to another problem: the increased chance that

there will be too few instances to base probabilities upon.  In contrast, the fuzzy k-nn method

avoids categorization and both of its related problems by, in the sense of (Viot 1993), fuzzifying

input and defuzzying output.

To the best of our knowledge, the fuzzy k-nn technique described in this thesis is the

only example of the use of a proper distance function and metric space being used for airport

weather prediction.  This is further explained in Chapter 2. 35

In Chapter 2, we survey how others have used fuzzy logic for retrieval.  In Chapter 3, we

describe our implementation of a fuzzy k-nn algorithm for airport weather prediction.

                                                     
35 For definitions of proper distance function and metric space, see footnote number 42 ahead on page 52.
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2. Literature Survey

In the previous chapter, we explained how retrieval of similar cases relates to CBR, fuzzy logic,

and weather prediction; namely: CBR depends on retrieval of similar cases, fuzzy logic enables

retrieval of similar cases, and the weather prediction technique of analog forecasting depends on

retrieval of similar cases.  We also explained why case adaptation and case authoring are

regarded as main challenges in CBR system development.

In this chapter, we survey the literature to explain how using a fuzzy k-nearest neighbors

based technique for retrieval of similar cases, designed and tuned with the help of domain expert,

can help us to exploit large databases of cases and available domain knowledge about similarity,

and can help us to avoid difficulties of case adaptation and case authoring.

In section 2.1, we describe the main resources for CBR.  In section 2.2 we review how

fuzzy logic is used in CBR.  In section 2.3, we provide a foundation for the fuzzy k-nearest

neighbors (fuzzy k-nn) technique.  In section 2.4, we review a number of CBR applications that

exemplify the fuzzy k-nn technique.  In section 2.5, we review weather prediction papers that use

CBR and fuzzy logic.

2.1 Resources for case-based reasoning

The main resources for case-based reasoning are (of course): cases, a method for

reasoning, and software.  The points of this section are:  CBR scales up to take advantage of

large databases of cases, one can reason on the basis of similarity alone, and domain knowledge

improves the process of determination of similarity, and existing software may or may not be

helpful.

2.1.1 Large databases of cases

CBR scales up to take advantage of large databases of cases .  Creecy et al. (1992)

describe an early successful large scale k-nn system, called “PACE.”  For the 1990 United States

Census, 22 million natural language census returns had to be classified into 232 industry

categories and 504 occupation categories.  The case base consisted of 132,000 previously

classified returns.

Before PACE, census classification required expensive, labor-intensive clerical work.

An expert system, called “AIOCS,” was developed in 1990 to assist clerks.  PACE required 4
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person-months to be built, whereas AIOCS required 192 person months.  PACE successfully

processed 60% of returns whereas AIOCS processed 47%.

The larger the database and the denser the examples close to the case, the better the

accuracy of PACE’s performance.

Confidence measures were a byproduct of the k-nn approach.  PACE generated a

nearness measure for each example.  If any new example was identical or very similar to a

previously seen case, then PACE attached high confidence to its results.  If no previously seen

case matched closely, PACE reported the closest cases and, additionally, informed the user that

the results were dubious.

Gentner and Forbus (1991) describe a model of similarity-based retrieval called

MAC/FAC, short for “Many Are Collected, Few Are Chosen.”  The idea is to exploit large case

bases with minimal computational cost.  Many potentially similar cases are screened using a

simple test, then a few probably similar cases are ranked for similarity using a more detailed test.

The MAC part encodes structured representations as content vectors whose dot product yields an

estimate of how well the corresponding structural similarities will match.  The FAC part

performs a more detailed, computationally expensive structural mapping.  MAC/FAC inspired

many researchers.

Scaling up helps us to avoid the case adaptation problem of CBR.  The more cases we

evaluate, the better the chance that good analogs exist and that there is less requirement for

adaptation.

2.1.2 Domain knowledge about similarity

One can reason on the basis of similarity alone, and domain knowledge improves the

process of determination of similarity.  Cain et al. (1991) use domain knowledge to influence

similarity judgement.  A few very simple domain-based rules about which combinations of

attributes are more important than others significantly improves CBR performance.

Aamodt and Plaza (1994) identify a trend in CBR research and development.  Whereas

pioneering work stressed the cognitive science based view of CBR as a plausible, general model

of intelligence, more recent work emphasizes the importance of knowledge acquisition in the

development CBR systems.  Based on this trend, Aamodt and Plaza (1994) urge CBR researchers

to aim for “flexible user control [and] total interactiveness of systems.”  CBR becomes more

applicable as it integrates knowledge based techniques.  Of particular relevance for this thesis,

they explain:
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The ‘indexing problem’ is a central and much focussed problem in case-based reasoning.
It amounts to deciding what types of indexes to use for future retrieval, and how to
structure the search space of indexes.  Direct indexes [i.e., examining surface features]
skips the latter step, but there is still the problem of identifying what types of indexes to
use.  This is actually a knowledge acquisition problem…

Watson and Marir (1994) survey CBR research and conclude:

Case-based reasoning will be ready for large-scale problems only when retrieval
algorithms are efficient in handling thousands of cases.  Unlike database searches that
target a specific value in a record, retrieval of cases from the case base must be equipped
with heuristics that perform partial matches, since in general there is no existing case that
exactly matches the new case.

The fuzzy k-nn method acquires domain-based knowledge about how to perform partial matching

and this acquired knowledge guides retrieval of similar cases from large case base (Hansen and

Riordan 1998).  Reasoning on the basis of similarity helps us to avoid the case authoring

problem: using similar, automatically-recorded cases eliminates the dependency on having a

person handcraft cases.

2.1.3 Commercial software tools

Hashemi (1999) reviewed numerous recently developed CBR software tools. 36  The

tools are described in terms of how they assist system development and how the systems operate.

In general, the tools share the following properties: For development, the systems help people to

construct case libraries.  Libraries are constructed through hierarchical organization of existing

cases and through helping people to author new problem-solving cases.  For operation, the

systems help users to retrieve similar and analogous cases.  Retrieval uses rules, object

hierarchies (i.e., decision trees), and nearest-neighbor algorithms.  Each of the reviewed tools is a

sort of production system 37 where, in the context of CBR, the productions are problem-solving

cases in a library.

                                                     
36 The review by Hashemi (1999) describes eleven CBR software tools:  Case-1 by Astea International,
ART*Enterprise and CBR-2 (CBR Express, CasePoint, Generator, and Tester) by Inference Corporation,
CasePower by Inductive Systems Inc., Eclipse by Haley Enterprises, ESTEEM by Esteem Software Inc.,
KATE by Acknosoft, ReCall by Isoft, ReMind by Cognitive Systems, S3-Case and CBR Works-4 by
TechInno.
37 A production system consists of a collection of productions (rules), a working memory of facts and an
algorithm known as forward chaining for producing new facts from old. A rule becomes eligible to “fire”
when its conditions match some set of elements currently in working memory. A conflict resolution strategy
determines which of several eligible rules (the conflict set) fires next. A condition is a list of symbols which
represent constants, which must be matched exactly; variables which bind to the thing they match and "<>
symbol" which matches a field not equal to symbol. (Definition from the Free Online Dictionary of
Computing, http://wombat.doc.ic.ac.uk/foldoc, downloaded Oct. 27, 1999).
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CBR software tools commonly assume that cases divide into hierarchies.  For example,

early applications dealt with dinner-planning: meats divide into classes such as chicken, fish, and

so on (Riesbeck and Schank 1989).  For another example, an infection-diagnosing system could

classify germs as either “gram positive” or “gram negative” (using a test in which a dye is

applied to a sample and the sample is examined to see whether the dye was absorbed).  Weather

cases do not divide into hierarchies, or distinct classes.  For any two distinct weather cases, a

third case could occur which would be midway between the first two.  If the first two cases are

used to define hierarchies, or classes, then classification of the third case would be ambiguous.

It can be difficult to adapt available CBR software tools for specific applications. 38  So

rather than using such a tool, we chose to develop a unique fuzzy k-nn system using the C

programming language.  Our three main reasons for building a system from basic components

are:

• Data opportunity.  The fuzzy k-nn weather forecasting system is not dependent on a

library of prototypical cases.  It does not require manual or automatic construction of

a library.  Instead, it uses existing, huge archives of ready-to-use weather data.

Moreover, these archives are continuously growing as new airport weather

observations are made.

                                                     
38 “At the risk of being ostracized by the CBR community,” Laight posted the following list of CBR
downsides to the AI-CBR mailing list in response to a request for downsides, on July 20, 1999.  The list,
informally posted by Graham Laight to the AI-CBR E-mail list, is the nearest thing to a consensus that we
have found so far—none of the many CBR-savvy recipients of Laight’s e-mail challenged this list.  (“There
are currently 660 registered members (as of May 1999) [of the AI -CBR mailing list],” according to Ian
Watson, the maintainer of the list (membership number downloaded from http://www.ai-
cbr.org/theindex.html on Sept. 25, 1999.)

CBR downsides

• High cost of CBR tools.
• Absence of a "standard" CBR tool, in the sense that MS Word is word processing standard.
• Cost and difficulty of implementing a CBR system.
• Difficulty of changing, or adapting, a system once it is implemented.
• You may find it just as easy (and successful) to build your application with a normal database package

(or even a spreadsheet!), unless your requirements make a good fit with a CBR package.  You may
even find a document search type application meets your needs.

• Cost of maintaining the case base, especially if the scope of the case base changes in any way.
• Information in the case base may become outdated.
• Each case may have to be carefully prepared by an expert.
• Depending on the application, it may be possible to get the information [relevant for problem the

application is meant for] in other ways.
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• Data integrability.  An advantage of applying fuzzy logic to data mining is that it

will enable us to integrate new forms of data with records of old data.  For future

work, we plan to combine satellite data and airport weather observations.

Operationally, satellite data is one of the most valuable forms of predictive guidance

for aviation forecasting, particularly short-term projection of satellite images.  The

archive of hourly airport surface weather observations, which stretches back 36

years, does not contain accompanying satellite images, but in many instances we can

reasonably infer what satellite images would have looked like based on the surface

observations.  For example, if surface conditions change from clear skies to rain, we

can reasonably infer that satellite images would have shown a change from clear to

overcast.  Past cases can be augmented with such inferred attributes, what would

have been shown with satellite data had it existed, and then compared with present

cases which have actual satellite data.  Thus, we can exploit short-range projections

of satellite data to search the archive more intelligently.

• System flexibility.  The available weather data and related weather forecasting

systems and programs depend mainly on C programs, so we will be able to integrate

our system effectively by developing parallel, easily modified code.

We are encouraged by the example of Baldwin and Martin (1995) who applied fuzzy

logic to data mining (they call their tool a “fuzzy data browser”) and found fuzzy logic to be

advantageous in three ways.

• Finding relationships.  Their system develops fuzzy rules  39 that describe

relationships within the data, based on numerous cases, and can thus evaluate new

cases accordingly:  “Each rule corresponds to a summary of several ‘similar’ cases in

the database into a fuzzy prototypical rule.  The value of a new case then

corresponds to an interpolation between these fuzzy prototypes.”  An extension of

this is “that it is possible to use the rules to highlight anomalous values.”  New cases

that do not fit previous patterns indicate new relationships that may warrant scrutiny.

• Involving and exploiting intelligent users.  “The system can run entirely

autonomously, or the user can inject expertise either in … suggesting attributes

                                                     
39 Baldwin and Martin (1995) regard fuzzy rules which condense data and “fuzzy prototypical cases” as
synonymous.  An example of a fuzzy rules is “if A and B then C,” where A, B, and C are fuzzy sets.
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which should be target for prediction … or suggesting attributes which should be

used to make the prediction … or suggesting compound features.  … The browser

can be used to explore intuition about the underlying relationships in the data, or left

to run autonomously and discover relations that can be presented to the user.”

• Combining new forms of data with records of old data.  “In many cases, data may

not be complete—for example, weather records could include daily temperature

extremes, rainfall, cloud cover, etc.  If a new machine became available for

monitoring atmospheric pollution, these measurements could be added to the

database, but the earlier records would not contain this information.  If there is a

relation between atmospheric pollution and some of the other recorded quantities,

rules modeling this relationship could be used to make an intelligent guess as to the

pollution level for each record where it was not measured.”  This data integrability

advantage of fuzzy logic will enable us to integrate into new cases new forms of

data, such as satellite data, and compare such enriched present cases (composite

cases) with past cases.

In this section, we described how, to overcome the case adaptation and case authoring

problems of CBR system development (which are described in subsection 1.3.2), three strategies

have been proposed: knowledge acquisition, partial matching, and use of very large case bases.

The rest of this chapter surveys papers that apply fuzzy logic to use these strategies.

2.2 Fuzzy logic and case-based reasoning

López de Mántaras and Plaza (1997) surveyed over 100 recent CBR papers and

concluded that

the use of Fuzzy Logic techniques may be relevant in case representation to allow for
imprecise and uncertain values in features, [and] case retrieval by means of fuzzy
matching techniques.  [Moreover] perhaps the most severe limitation of existing systems
[all types of CBR systems] is the feature-value representation that is being used for cases.
The consequence is that case-based algorithms cannot be applied to knowledge-rich
applications that require much more complex case representations, for example cases with
higher-order relations between features.

The CBR process of matching cases can be carried out by the fuzzy logic process of measuring

the degree of similarity of cases.

CBR and fuzzy logic both deal with how to determine degree of similarity, but they tend

to use different approaches.  CBR commonly deals with features, geometry, and structure (Bridge
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1998, and Liao et al. 1998), whereas fuzzy logic deals explicitly with uncertainty and ambiguity

expressed intentionally by humans when they are asked to describe similarity.  Fuzzy words

describe uncertainty intentionally and fuzzy sets represent the intended uncertainty.

2.2.1 Fuzzy CBR formalism

Fuzzy CBR is a type of CBR that uses fuzzy methods to represent and compare cases,

and to form solutions.  The implicit principle of the fuzzy k-nn method is expressed by Dubois et

al. (1997) as: “the more similar are the problem description attributes, the more similar are the

outcome attributes.”

Their paper is relevant for this thesis for two reasons.  First, for foundation, it provides a

general mathematical formalism with which to take advantage of this principle.  The fuzzy k-nn

method applied to a weather prediction problem is an actualization of this general formalism.  In

this subsection, we summarize their formalism in order to provide a basis for the fuzzy k-nn

method.  Neither we nor Dubois et al. (1997) investigate learning aspects of CBR.

Second, it describes how a fuzzy set framework accommodates two types of problems:

deterministic and non-deterministic.  As we noted in the Introduction, the weather prediction

problem, which is deterministic in theory, is non-deterministic in practice because of uncertainty

surrounding weather measurements.  Fuzzy sets represent this uncertainty.

Our interpretation of fuzzy CBR formalism is consistent with that given by Dubois et al.

(1997).  This subsection reviews and summarizes their description, nearly verbatim.

A case is viewed as an n-tuple of precise attributes.  The set of attributes is divided into

two non-empty disjoint sets: the problem description attributes subset and the solution

description attributes subset, which are denoted by S and T respectively.

A case is denoted by a tuple (s, t) where s and t stand for complete sets of precise

attribute values of S and T respectively.

To perform case-based reasoning, we relate problems with solutions.  We assume that we

have a finite set M of stored cases called a case base or memory (M is thus a set of pairs (s, t)),

and a current problem description denoted by s0, for which the precise values of all attributes

belonging to S are known.  Then case-based reasoning aims to extrapolate an estimate of the

value t0 of the attributes in T for the current problem.

In this setting, the implicit case-based reasoning principle is defined as:

The more similar are the problem description attributes, the more similar are the outcome
attributes.
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This is the implicit principle that underlies all deterministic CBR.  If two items are perfectly

similar then they are identical.  So in theory, if a problem is well-posed—if a problem-to-solution

mapping is many-to-one or one-to-one—then the solution is deterministic.  In a deterministic

setting, the CBR principle may be expressed with the following constraint

∀ (s1, t1), (s2, t2) ∈  M, S(s1, s2) ≤ T(t1, t2)

This means that the similarity of s1 and s2 constrains the similarity of t1 and t2 at a

minimum level.  In other words, the problem is well posed.  For deterministic CBR to be

applicable, cases must map to the solution space in a many-to-one or a one-to-one way.

Deterministic CBR is inapplicable when cases map to the solution space in a many-to-many way.

Expressed in terms of fuzzy relations on S and T, the implicit CBR principle can be

expressed with the following rule:

The more S-similar s1 and s2, the more T-similar t1 and t2

where (s1,t1,), (s2, t2) ∈  M.  A problem in this fuzzy CBR framework is denoted with the 4-tuple

〈M, S, T, s0〉  where the above principle is applicable.

All of the applications described in this chapter (ahead in Section 2.4) and our own

application (in Chapter 3) exemplify of the use of this principle.  A detailed example of the use

of this principle is given in the Appendix B: A Worked-out Example of Fuzzy k-nn Algorithm for

Prediction.

In reality, however, problems are often ill-posed. 40   In the physical world, attributes are

rarely known precisely and with certainty.  This makes efforts to develop deterministic CBR

futile.  This is also why very long-range weather predication remains impossible.

Prediction of the sufficiently distant future is impossible by any method, unless the
present conditions are known exactly.  In view of the inevitable inaccuracy and
incompleteness of weather observations, precise very-long range forecasting would seem
to be non-existent [and this conclusion does] not depend on whether the atmosphere is
deterministic.  (Lorenz 1963)

Long-range prediction of many real, dynamical systems is hampered in this way.  Given enough

time, chaos defeats determinism in natural systems across all scales, ranging from molecular to

astronomical. 41

                                                     
40 The snowboard analogy in Figure 5 illustrates how many-to-one mapping switches to many-to-many
mapping over time.
41 Simple three-body systems can have complex orbits, depending on the initial conditions (Lorenz 1993).
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To deal with non-deterministic problems, Dubois et al. (1997) suggest to relax the

constraints of the above-described formalism and to accept that “case-based reasoning can only

lead to cautious conclusions.”  Indeed, when attempting long-range prediction using realistic,

dynamical, analogous temporal cases, we should always qualify our conclusions.  We should

recognize the margin of error.  Examining ensembles of cases, such as those shown in the

snowboard analogy (Figure 5, page 29), enables us to determine appropriate margins of error to

qualify our results.

To relax the constraints, Dubois et al. (1997) reword the principle slightly and use fuzzy

sets to modify the constraint.

the more similar s1 and s2, the more possible t1 and t2 are similar

Yager (1997) also argues for a unified view of fuzzy set theory and CBR, and goes so far

as to contend that: “The reasoning process used in FSM [fuzzy systems modeling] and CBR are

the same.”  The main distinction between fuzzy modeling and CBR identified by Yager is that

fuzzy modeling is generally used in environments in which the required solutions are
numeric values, whereas the case-based methodology has a more ambitious agenda
regarding the domain of the possible solution.  This more ambitious agenda comes at the
price of not always having available the necessary operations to combine solutions.

Thus fuzzy CBR is a subset of CBR, a type of CBR that uses fuzzy methods to represent and

compare cases, and to form solutions

2.2.2 Numerous conditions and partial matching

Fuzzy CBR combines numerous conditions and partial matching in queries.  As the

number of conditions specified increases, the chance of turning up a good match increases.  The

same principle underlies a Bayesian case-matching scheme described by Kontkanen et al. (1998).

The basic idea in their scheme is to use prior and posterior probabilities of certain cases to adapt

cases retrieved from a case base.  Prior probability describes the likelihood of a feature prior to

the query.  Posterior probability describes the likelihood of a feature after the query.  For

example, at Halifax the prior probability of rain at any given hour may be near 10%, but the

posterior probability of rain an hour after rain was observed may be near 90%.  Kontkanen et al.

(1998) explain how to use such information to weight cases appropriately when making

solutions.  But both types of probability have their problems.  Using prior probability turns up

many cases of low similarity, where as posterior probability turns up few cases, or no cases, of

high similarity.  Kontkanen et al. (1998) explain the necessity of having a “soft” metric for
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dealing with cases that may or may not have good matches in the case base.  Their proposed

future work is to further develop and test a “soft constraint approach.”

Their system uses cases that are continuous feature vectors which, as they note, are the

commonest type of vector in CBR prediction research.  They further explain how CBR distance

metrics are themselves, in essence, restricting assumptions on the problem domain:

in many traditional CBR systems, the algorithms typically use a distance function (e.g.,
Euclidean distance) for the feature vectors in order to determine the most relevant data
items for the task in question.  The use of a specific distance function implicitly assumes
that the distance function is relevant with respect to the problem domain probability
distribution, and hence restricts the set of distributions considered.

One commonly used simplifying assumption is that all the attributes are independent.

This makes integration of probabilities simple and feasible.  Each attribute brings its own

independent probability distribution into the equation.  They formulate a Bayesian similarity

metric which exploits posterior probability.

Their experiment was to repeatedly select cases at random from the case base, remove

some features, introduce small random modifications to the rest of the features of the case, and

use the resulting partial scrambled case as a query on the case base.  They found that the

Bayesian similarity score produced better results than a simple Hamming distance similarity

score.  Original cases could be recognized in the case base based on only a few perturbed original

attributes.

As they note in their conclusion, basic “Bayesian probability theory can be used as a

formalization for the intuitively appealing CBR paradigm.”  They cite one of the advantages of

the Bayesian scheme is that it forces one to explicitly recognize all the assumptions made about

the problem domain.  Simple distance metrics can conceal assumptions about dependence or

independence of features, assumptions that may or may not be correct.

Their conclusion is reasonable and hardly contentious.  Basically they conclude that

probabilistic methods, carefully used, are useful for CBR.  We contend that fuzzy k-nn offers

similar opportunities to complete partial cases by querying databases.  Moreover, the fuzzy k-nn

enables us to explicitly express assumed knowledge of similarity and assumptions about

dependence or independence of features acquired from a domain expert.  Assumptions about

dependence and independence of features are determined by how fuzzy sets are operated upon.

For example, the similarity of two case’s winds can be computed as a single value based upon

the similarity of two interdependent wind variables (direction and speed), while the similarity of
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two case’s humidities can be computed as another single value based upon the independent

variable of humidity.

Bosc and Pivert (1992) explain, in formal mathematical terms, how fuzzy sets enable

flexible querying of databases.  Fuzzy sets enable imprecise queries on a database.  Two

situations in which imprecise query conditions are useful:

• When the user is imprecise, fuzzy sets model the imprecision.

• When a prespecified number of responses is desired, discriminating margins of fuzzy

sets enable elements in the database to be ranked according to degree of similarity.

Bosc and Pivert (1992) suggest, for a research topic, “improvement of the discriminating

capability of the fuzzy sets based approach in two extreme cases: no element is selected (null

degree) and a too large number of elements which have received a degree equal to 1.”

Bosc and Pivert (1992) used trapezoidal fuzzy sets.  Such fuzzy sets under-utilize the

discriminating power of fuzzy sets.  Two elements whose memberships both equal 0 or both

equal 1 are seen as equivalent even though they may differ slightly.  However: unimodal fuzzy

sets discriminate more effectively than trapezoidal fuzzy sets.  In Chapter 3, we show how the

problem of having too few or too many matches is avoidable through appropriate fuzzy set

design.  Non-zero, continuously-varying, unimodal fuzzy sets discriminate continuously between

cases and, thereby, equip a similarity measuring function with the properties of a formal metric

space. 42

2.2.3 Flexible similarity-measuring framework

Fuzzy set theory is a flexible framework for measuring similarity that can: 1) include or

exclude the properties of reflexivity, symmetry, monotonicity and transitivity; and 2) subsume

                                                     
42 The critical part of the fuzzy k-nn technique, which we describe in Chapter 3, is a similarity measuring
function called sim.  The complement of similarity is dissimilarity (1.0 - sim) and this dissimilarity operates
like a distance function in a formal metric space.  Kasriel (1971) defines a distance function and metric
space as follows:

Let d be a nonnegative real-valued function defined on X × X that satisfies the following:
For all x, y and z in X,

(a)  d(x, y) = 0 if and only if x = y
(b)  d(x, y) = d(y, x)
(c)  d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

The function d is called a distance function or a metric for X and (X, d) is called a metric
space.

When one uses trapezoidal fuzzy sets, property (a) may be violated.
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both relative and absolute measures of similarity.  These are commonly desired properties of

similarity measuring functions in CBR.

In a description of a lattice-valued approach 43 to making similarity-measuring functions,

Bridge (1998) identifies four properties that must be addressed in the design of similarity-

measuring functions.

• reflexivity: x ~ x ⇒  “topmost” similarity 44

• monotonicity: continuously increasing or decreasing

• symmetry: x ~ y = y ~ x

• transitivity: x ~ y and  y ~ z will imply x ~ z

Designers may or may not want to impose the above conditions.  Reflexivity is usually a

desired property and monotonicity is often desired.  Symmetry may or may not be desired,

depending on the intent.  For example, we would assert that

rain ~ snow = snow ~ rain, but precipitation ~ snow < snow ~ precipitation. 45

Transitivity is usually not desired.  For instance, knowing the values of

fog ~ rain and rain ~ snow does not necessarily determine the value of fog ~ snow

because the relationship between fog and snow is special and does not necessarily involve rain at

all.

Bridge (1998) claims that the lattice-valued approach to measuring similarity is

advantageous because it enables us to address all the four properties simultaneously.  Similarly,

we claim that fuzzy set theory is advantageous because, as a formalism, it accommodates

variations of the four properties (Zimmerman 1991).

Bridge (1998) describes two basic types of similarity functions, absolute and relative.

An absolute similarity function takes two representations and returns a Boolean result, either

similar or not similar (fBoolean(x, y) = {0, 1}), whereas a relative similarity function returns a

number  (fRelative(x, y) = {0, 1} = R).  As Bridge explains, the problem with absolutism is that it

                                                     
43 The lattice is a graphical way of designing a similarity measure in which the edges of the graph
correspond to similarity-measuring operations.  Bridge (1998) defines a lattice as a “partially ordered set of
values that satisfies certain properties.”  The set members are similarity-describing variables which may be
in different forms, such as Booleans, numbers, or “hedge words”  (e.g., {very, quite, fairly, barely}).
44 The symbol “~” represents the similarity-measuring function, as in (Bridge, 1998).  We understand x ~ y
to mean “the similarity of x to y.”  By “topmost,” Bridge means the highest possible value of similarity.  In a
normalized fuzzy set, this equates to 1.0.
45 If asked, “Is precipitation snow?” we would say maybe.  If asked, “Is snow precipitation?” we would say
yes.
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does not correspond with “people’s intuitive concept of similarity, in which there is a notion of

‘degrees of similarity.’”  And the problem with relativism is that

on occasion, the numbers used are arbitrary.  This occurs when similarity function
designers need something richer than absolute similarity, i.e., they need degrees of
freedom, but they do not need to quantify, or cannot properly quantify, the degrees.  Any
number used in these circumstances will be contrived.

Fuzzy set theory gives CBR system designers and CBR knowledge acquirers a full range

of similarity-measuring functionality.  The sets enable similarity-measuring results to be

qualified or quantified, depending on whether the results are fuzzified of defuzzified, or results

can simply be ranked according to degree of similarity.

Bridge (1998) claims versatility as another advantage of the lattice-valued framework:

We claim that the advantages of our [lattice-valued] metric framework are that: it
subsumes absolute and relative measures (i.e., these are instantiations of the framework);
it introduces (again as instantiations) many other ways of measuring similarity [such as
hedge words] (only a few of which other researchers have reported in the literature); and
it allows the easy combination of similarity functions.

Fuzzy set theory also subsumes absolute and relative measures.  Absolute measures are

achieved by prescribing crisp sets, which are a subset of fuzzy sets.  Relative measures are

achieved by prescribing graded membership.  One of the main recommendations of fuzzy set

theory is its facility for operating directly with “hedge” words (e.g., Zadeh 1999, Zimmerman

1991, Cox 1992, and Maner and Joyce 1997).

Common types of variables used to describe features in case-based systems are

continuous, ordinal, nominal, and interval-specific.  Fuzzy set theory complements CBR by

enabling us to represent features in another way, as Main et al. (1996) explain:

A large number of the features that characterize cases frequently consist of linguistic
variables which are best represented using fuzzy feature vectors.

2.2.4 Numbers and words

Jeng and Liang (1995) propose a fuzzy logic based approach to retrieval and cite three

main advantages of the approach.  First, it allows numerical features to be converted into fuzzy

terms to simplify the matching process.  Most existing CBR methods assume qualitative features,

such as “weak or powerful weapon,” but provide few options for how to deal with numerical

features.  Second, it allows multiple indexing of a single case based on a single attribute with

different degrees of membership.  A single case may be applied in various contexts—thus, it

supports the relational database model as opposed to the structured database model.  And third, it
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allows greater flexibility in the retrieval of candidate cases.  Queries can be modified

qualitatively and linguistically to suit special circumstances.  For instance, one may request cases

describing items that are old or in a smaller subset of very old, depending on the circumstances.

Jeng and Liang (1995) explain how the α-cut applies to CBR.  The α-cut describes the

subset of cases that have membership above a prescribed threshold.  For instance, similar cases

may have membership values in the range [0.0…1.0].  If we specify α = 0.5, then the α-cut of

similar cases will be only the cases with membership values, µ, such that µ ≥ 0.5.  As Jeng and

Liang (1995) point out, “delicate tradeoffs are involved in choosing proper α-cuts.”  For

instance, choosing a high level of α increases efficiency by allowing the system to rule out cases

with low membership but this tactic may also limit the retrieval flexibility of the system.  We

will use the α-cut convention when we describe our fuzzy k-nn weather prediction system in

subsection 3.2.

2.3 Foundation for fuzzy k-nearest neighbors technique

This section provides a foundation for the fuzzy k-nn technique.  Subsection 2.3.1

reviews the more general k-nn technique.  Subsection 2.3.2 reviews the fuzzy k-nn technique.

Subsection 2.3.4 describes special properties of the fuzzy k-nn technique.

2.3.1 k-nearest neighbors technique

The foundation of the fuzzy k-nn technique is the k-nn technique.  The definition of k-

nearest neighbors is trivial: For a particular point in question, in a population of points, the k

points in the population that are nearest to the point in question.  Finding the k-nearest neighbors

reliably and efficiently can be difficult.  How “nearness” is best measured and how data is best

organized are challenging, non-trivial problems.

The implicit assumption in using any k-nearest neighbors technique is that items with

similar attributes tend to cluster together.  Hence, if unknown attributes of an observed item are

sought, then examination of its neighbors should suggest what those unknown attributes may be.

Any k-nearest neighbors technique is effective only to the extent that the assumption of

clustering behavior is correct.  But clustering behavior varies.  For example, wealthy suburb

dwellers tend to have wealthy neighbors, whereas wealthy city dwellers tend to have mixed

“classes” of neighbors.  The k-nearest neighbors method is most frequently used to tentatively

classify points when firm class bounds are not established.
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The vital part of any nearest neighbors technique is an “appropriate” distance metric, or

similarity-measuring function, as Dudani (1976) explains.

It is reasonable to assume that observations which are close together (according to some
appropriate metric) will have the same classification.  Furthermore, it is also reasonable to
say that one might wish to weight the evidence of a neighbor close to an unclassified
observation more heavily than the weight of another neighbor which is at a greater
distance from the unclassified observation.  Therefore, one would like to have a weighting
function which varies with the distance between the sample and the considered neighbor
in such a manner that the value decreases with increasing sample-to-neighbor distance.

Dudani (1976) proceeds to describe a “distance-weighted k-nearest neighbors rule” which can

decide classification.  Suppose we wish to label a new unknown point.  We can decide its label

according to the labels of its neighbors, either according to a distance-weighted scheme or

according to a simple majority of its neighbors.  In an experiment, Dudani (1976) found that “a

lower probability of misclassification was obtained for the distance-weighted k-nearest neighbors

rule than for a simple majority k-nearest neighbors rule.”

The main problem to solve in developing any k-nn technique is to develop an

appropriate metric.  This problem occurs in numerous AI settings.  Saying that a k-nn technique

is “distance-based” leads to two questions:

• How is distance determined?

• How is uncertainty computed?

Kamp et al. (1998) explain how CBR, information retrieval systems, and database

management systems (DBMS) all involve problem of finding nearest neighbors and of computing

with uncertainty as follows.

Handling of incomplete and vague data is closely intertwined with case-based reasoning.
However, also within database research there is a growing interest in handling of
incomplete and vague data.  [In all these settings] nearest-neighbor queries can be directly
used to determine the most similar cases.

Kamp et al. (1998) consider multidimensional access methods and contrast three query

types: exact match, range, and nearest-neighbor.  They offer a general warning about spatial

access methods:

It is often argued, or implicitly assumed that cases are points in d-dimensional space and
the retrieval process is built upon this assumption.  In our experience, this assumption is
wrong.  Most often, cases are incompletely described; the values of certain attributes are
unknown, or only vague.
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Kamp et al. (1998) suggest that the greatest opportunity for the development of CBR

systems is scaling up systems and integrating them with existing large databases.  Kamp et al.

(1998) further suggest that

a topic of future research within intelligent retrieval is the integration of domain
knowledge and background knowledge to enhance the semantic of the retrieval.  This
could be done by considering and integrating techniques from knowledge representation
[and] in this area, further research includes finding guidelines for finding the right
tradeoff between expressiveness and complexity for different application scenarios, the
search for approximations, etc.

Kamp et al. (1998) wrote the summary chapter in a book that compiles recent work by CBR

researchers in Germany.  The need for better schemes for approximation and dealing with

imprecision is mentioned throughout the book.  The word fuzzy is strangely absent from this

book.  Computing with imprecision is what fuzzy logic excels at.

[fuzzy logic has a] tolerance for imprecision which can be exploited to achieve
tractability, robustness, low solution cost, and better rapport with reality.  (Zadeh 1999).

The fuzzy k-nearest neighbors technique described in the following section is a method

that combines the advantageous distance-weighted quality recommended by Dudani (1976) with

the need for better retrieval semantics (i.e., deal with vague attributes, incorporate domain

knowledge, balance expressivity and complexity) recommended by Kamp et al. (1998).

2.3.2 Fuzzy k-nearest neighbors technique

A fuzzy k-nearest neighbors (fuzzy k-nn) technique is simply a nearest neighbors

technique in which the basic measurement technique is fuzzy.

As detailed in the previous section, the term nearest neighbors technique refers to a

technique that identifies the closest points to a given point in some multi-dimensional space.  The

motivation for using nearest neighbors techniques is usually to infer what one of the properties of

an item is by examining other properties.  The underlying assumption is that similar items

cluster.

For a simple example, with a given a weather situation, suppose we want to determine

what the precipitation type is, rain or snow.  And suppose all we know is that the temperature is

-10ºC and that it is precipitating.  Examination of all such weather situations would show that

precipitation types were usually snow, rarely some other form of frozen or freezing precipitation,

and never rain.  So, on that basis, we could infer that the precipitation type for the given situation

is probably snow.  We could classify the precipitation type as “probably snow.”  Indeed, nearest
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neighbors techniques are usually used to enable some form of classification.  In this thesis, we

are more concerned with case-to-case comparison than with case-to-class comparison.

The fuzzy k-nn technique applied to continuous vectors, achieves automatic, expert-like

similarity comparison of complex objects.  Each comparable attribute in two comparable vectors

is compared with an attribute-specific fuzzy set and the results are aggregated to describe the

overall similarity of the two vectors.  The fuzzy k-nn technique, applied to time series of

continuous vectors, achieves effective analog prediction, as we demonstrated by developing a

weather prediction system (Hansen and Riordan 1998). 46

Keller et al. (1985) define and describe the fuzzy k-nearest neighbors algorithm in a foundational

and theoretical paper.  The key points of that article are summarized as follows.

Stored cases are labeled into distinct classes.  Given a new case to classify, both crisp

and fuzzy k-nn algorithms are made to find k-nn.  The algorithms differ in two ways.  First, the

crisp algorithm uses a distance function, whereas the fuzzy algorithm uses fuzzy set based

comparisons.  Second, the crisp algorithm assigns the new case to the class that is represented by

a majority of its k-nn, whereas the fuzzy algorithm assigns the new case varying degrees of

membership to all the classes represented by the k-nn, according to the degree to which the new

case matches each of the k-nn.

The fuzzy k-nn algorithm determines the degree of membership of any given continuous

vector in any class of continuous vectors, as Keller et al. (1985) explain:

The advantage provided by fuzzy sets is that the degree of membership in a set can be
specified, rather than just the binary is or isn’t a member.  This can be especially
advantageous in pattern recognition.

Patterns in real-world data are often ambiguous and therefore difficult to classify into crisp sets.

The fuzzy k-nn algorithm described by Keller et al. (1985) is general.  It can be used to

classify any kinds of continuous vectors into arbitrary classes.  In this thesis, continuous vectors

describe time-varying weather information.  Each new, unique, present case weather acts as a

special class—the “class” which best describes present weather and which is centered on the

present case.  We want to find in the database k nearest neighbors for such a special class of

interest.

                                                     
46 To compare vector time series, we used matrix representations: rows for attributes, columns for time
steps.  (Hansen and Riordan 1998)
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Comparing the fuzzy k-nn algorithm to a “crisp” k-nn algorithm, Keller et al. (1985)

point out a special advantages of the fuzzy k-nn algorithm:

An incorrectly classified sample will not have a membership in any class close to one
while a correctly classified sample does posses a membership in the correct class close to
one.

Keller et al. (1985) compared the performance of the fuzzy k-nn nearest neighbors with

crisp k-nn algorithm (k-means clustering) and found two advantages in fuzzy k-nn method:

• Fuzzy k-nn classification is more accurate than crisp k-nn classification. 47

• Fuzzy k-nn classification solutions include useful confidence measures based on to

the resulting memberships.

Two contributions of fuzzy logic to case-based reasoning are that it can improve

performance of retrieval in terms of accuracy and that it can increase the interpretability of

results of retrieval.  The accuracy improvement comes from the avoidance of unrealistic absolute

classification.  The interpretability increase comes from the overall degree of membership of a

case in a class which provides a level of assurance to accompany the classification.  For example

(and to preview the way we use fuzzy logic in Chapters 3 and 4), if an expert user configures

similarity-measuring fuzzy sets, and the thus-equipped similarity-measuring algorithm uses a

simple maximum operation to aggregate results of numerous similarity tests, and the algorithm

reports that a past case has an overall score of “very similar” to a present case, then the user can

be assured that every attribute of the past case is at least “very similar” to the present case in

accordance with that user’s own expressed understanding of similar.

                                                     
47 The fuzzy k-nn algorithm achieves improved accuracy through the avoidance of unrealistic absolute
classification during algorithm execution.  Keller et al. (1985) claim, “The advantage is that no arbitrary
assignments are made by the algorithm.”  By “not arbitrary,” they mean: “The advantage provided by the
fuzzy sets is that the degree of membership in a set can be specified, rather than just the binary is or isn’t a
member.”
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An item may be defined by a collection of continuous attributes and is thus general.  A

class may be defined by either a specific case (a prototype), an idealized case, or a group of

labeled items, and is thus general.  The assumption in using prototypes is that prototypes are

complete members of the class that they represent.

In addition to comparing fuzzy and crisp k-nn algorithms, Keller et al. (1985) compare

fuzzy and crisp nearest prototype classifiers:

Actually, the only difference is that for the nearest prototype classifier, the labeled
samples are a set of class prototypes, whereas in the nearest neighbors classifier we use a
set of labeled samples that are not necessarily prototypical.  Of course, the nearest
prototype classifier could be extended to multiple prototypes representing each class,
similar to the k-nearest neighbors routine.

The algorithm for a classic fuzzy nearest neighbors prototype algorithm, proposed by

Keller et al. (1985), is shown in Figure 8.

Let W = {Z1, Z2, …, Zc} be the set of c prototypes representing c classes.

BEGIN
Input x, vector to be classified.
Initialize i = 1.
DO UNTIL (distance from each prototype to x is computed)

Compute distance from Zi to x.
Increment i.

END DO UNTIL
Initialize i =1.
DO UNTIL (x assigned membership in all classes)

Compute ui(x) using (1)
Increment i.

END DO UNTIL
END

where

  1 / !x - Zi!
2/(m-1)

ui(x) =   c (1)
 Σ (1 / !x - Zj!

2/(m-1))
j = 1

where m determines how heavily the distance is weighted when calculating each neighbor’s
contribution to the membership value.

and where !x - Zi! represents the membership of x in the class of Zi

Figure 8.  Fuzzy nearest prototype algorithm copied from (Keller et al. 1985).
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To classify a new case using the nearest prototype classifier,

membership in each class is assigned based only on the distance from the prototype(s) of
the class.

Keller et al. (1985) describe the benefits of the fuzzy prototype algorithm:

The fuzzy prototype classifier, while not producing error rates as low as the fuzzy nearest
neighbors classifier, is computationally attractive and also produces membership
assignments that are desirable.

The membership provides a useful level of confidence of the classification.

Our fuzzy k-nn algorithm, described in Chapter 3, may be viewed as a variation of the

above algorithm, a variation that includes some steps to reduce computational cost, as explained

in Section 3.3.1 (page 89).

2.3.3 Weather situations are not prototypical

Weather situations cannot be condensed and faithfully represented as distinct prototypes.

There are no original models of weather situations upon which all other weather situations are

patterned: each situation is unique (as explained in section 1.5.3, page 26).

Therefore, to achieve the benefits of the fuzzy nearest prototype algorithm for analog

weather prediction, we will treat the present weather case as the only “prototype” against which

all stored cases must be compared.  Given a new, unique weather case, and a database of past

weather cases, we wish to isolate k analogs for the present case among the past cases.  The

challenging problem is to determine the degree to which past cases are analogs.  The subsequent

problems of sorting, weighting, and predicting are relatively simple.

Two basic contrasting approaches are crisp k-nn and fuzzy k-nn.  With the crisp k-nn one

would in advance specify thresholds (ranges) for membership in the set of analogs.  If past cases

fall within the ranges they would be classified as analogs, and if past cases fall outside the ranges

they would be classified as non-analogs.  A problem with this approach is that it is unlikely that

it will isolate k analogs—it may produce no matches, fewer than k matches, or more than k

matches—because some weather cases are rare while others are common.  This is the point at

which arbitrary search parameter adjustments may need to be made by a user, and thus algorithm

autonomy is lost.  To isolate k analogs certain ranges would need to be widened or narrowed.

This would require user intervention and perhaps successive attempts.  Each such range-

adjusting intervention is arbitrary, for instance, should one tighten the “temperature fit” or the



62

“wind direction fit.”  Empty prescribed bins have been a problem in earlier comparable weather

analog forecasting systems (Martin 1972).

The fuzzy k-nn algorithm is based on the ideas that analogs are similar cases and that

similar is a fuzzy property.  For example, if the present temperature is 10°C, then a temperature

of 11°C would be considered very similar, 15°C somewhat similar, and 20°C hardly similar.

The fuzzy k-nn algorithm can run autonomously because no arbitrary classification

assignments are made by the algorithm.  Rather, the fuzzy k-nn algorithm describes all past cases

as having varying degrees of membership in the set of analogs for the present case, sorts them,

and the k cases with the highest degrees of membership are the k-nn.  With a fuzzy distance

metric, one pass through the set of past cases will always isolate k-nn.  Fuzzy sets emulate

arbitrator experts.  For example, for purposes of evaluating similarity, a weather forecasting

expert may consider a difference of 5 degrees Celsius in temperature as equivalent to a difference

of 10 degrees in wind direction.  For case-to-case comparison, triangular fuzzy sets are specified

accordingly.

The degree to which the fuzzy k-nn are analogs for the present case make the search

results interpretable.  If the k-nn are analogs to a high degree, then the current case is common

and one can associate high confidence in a prediction based on the k-nn.  If the k-nn are analogs

to a low degree, then the current case is rare and one can associate low confidence in a prediction

based on the k-nn.

2.3.4 Properties of the fuzzy k-nn technique

In subsection 2.3.1, we explained how three aims of research into intelligent retrieval

are: to integrate domain knowledge into the retrieval process, to deal sensibly with the

uncertainty associated with approximately measured variables, and to find the right balance

between expressivity and complexity (Kamp et al. 1998).  In subsection 2.3.2, we explained how

fuzzy set theory is a framework that combines realistic expressions of domain knowledge with

uncertain variables, controls expressivity through the shape of fuzzy sets, and controls

complexity through the aggregation of a collection of system-modelling fuzzy statements.  In this

subsection, we describe three special properties of the fuzzy k-nn technique that help it to

perform intelligent retrieval.

First, the fuzzy k-nn technique recognizes family resemblance.  Pattern recognition

depends on being able to detect and describe similarity between objects.  Dreyfus (1992)
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describes two approaches for describing similarity between objects, family resemblance and class

membership, as follows.

Family resemblance differs from class membership in several important ways: classes can
be defined in terms of traits even if they have no members, whereas family resemblances
are recognized only in terms of real of or imaginary examples.  Moreover, whereas class
membership is all or nothing, family resemblance allows a spectrum ranging from the
typical to the atypical.

The fuzzy k-nn technique does not define classes in terms of specific traits.  It does not

determine degrees of membership of a weather case in predefined fuzzy sets such as low or high

temperature.  Rather, it measures the degree to which any given case is similar to other cases in

the database.  In the sense of (Dreyfus 1992), it determines the degree of family resemblances of

the case compared to the k most similar cases in the entire population of cases.

Second, the fuzzy k-nn technique avoids the cluster validity problem—because it is not a

“fuzzy clustering technique.”  The purpose of clustering techniques is to identify structure, or to

recognize patterns. 48  Whereas the purpose of fuzzy k-nn is simply to identify similarity, not to

delineate presumed clusters.

Zimmerman (1991) describes fuzzy clustering and we summarize his description as

follows:  One begins by assuming that the problem of feature extraction has been solved.  Each

of n items is characterized by p attributes and the task is to divide the items into c categories, 2 ≤

c < n, homogeneous subsets called “clusters.”  The number of clusters, c, is usually not known in

advance.

Computation of fuzzy k-nn is a preliminary step in the computation of fuzzy clusters.  A

point with more near neighbors than any other point is, logically, the center of a cluster.

Zimmerman (1991) describes how the centers and memberships are calculated by using an

iterative scheme to minimize a summation of matrices.  The details of this scheme are not

relevant here, so we will forgo them.  What is relevant here, about fuzzy clustering, is the

question of cluster validity.

Yang (1993) reviewed 103 papers dealing with fuzzy clustering and concluded:

We have already reviewed numerous fuzzy clustering algorithms.  But it is necessary to
presume the number c of clusters for all these algorithms.  In general, the number c should
be unknown.  Therefore the method to find optimal c is very important.  This kind of
problem is called cluster validity.

                                                     
48 Bezdek and Pal (1992) offer a large collection of papers which describe how to use fuzzy models for
pattern recognition.
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The fuzzy k-nn avoids the difficult cluster validity problem by forgoing the problem of

identifying global patterns—it assumes that such patterns exist and forgoes the problem of

describing such patterns—and, instead, for a specific case proceeds to identify the most relevant

information, local patterns, contained in a case base by identifying k-nn for that case.

Third, the fuzzy k-nn technique avoids the “rule explosion problem”—because it is not a

conventional fuzzy rule based system.  Rule explosion is a major problem in designing fuzzy rule

based systems.  The number of rules in a system grows exponentially with the number of input

and output variables (Kosko 1997). 49  For instance, suppose we have a system where each input

is represented by three fuzzy sets.  If we have two inputs, then nine fuzzy rules are needed

(32=9).  If we have three inputs then twenty-seven fuzzy rules are needed (33=27).  Hence, fuzzy

systems do not scale up well for systems with many variables, or dimensions.

The fuzzy k-nn algorithm avoids the rule explosion problem because it does not attempt

to abstract the complex behavior of a system into rules.  Instead, each observed system state is, in

effect, a rule and, in that sense, the ratio of rules to model points is contained at 1:1.  A fuzzy rule

and a fuzzy similarity-measuring function are contrasted in Figure 9.

                                                     
49 In addition to an exponential increase in number of rules as the numbers of input and output increase,
there is a linear increase in number of rules as the expressed precision of input and output dimensions

a1 ∨  b1 → c11

…

ai ∨  bj → cij

sim ((a1, b1), (a2, b2)) = µa(a1, a2) ∨  µb(b1, b2)

(a)  Fuzzy rule based system.  Input
variables are a and b, and the output
variable is c.  Input variable a is
represented with i fuzzy sets and
variable b is represented with j fuzzy
sets.  The number of required rules
equals the product of i·j.  As input
variables are added, the number of rules
grows exponentially.

(b)  Fuzzy similarity-measuring function.
(a1, b1) and (a2, b2) describe two states of a
2-D system.  µa and µb are two similarity-
measuring functions used to compare two
attributes.  The number of required similarity-
measuring operations rules equals the number
of variables of the system.  As cases are
accumulated, the number of operations grows
linearly.

Figure 9.  Rule explosion in a fuzzy rule base contrasts with rule containment in a fuzzy k-nn

similarity-measuring function
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A possible contribution of case-based reasoning to the field of fuzzy logic based

applications would be to help to avoid the rule explosion problem.  For the fuzzy k-nn technique,

the number of necessary similarity-measuring functions grows linearly with the number of input

dimensions, not exponentially.

2.4 Applications that use fuzzy k-nn techniques

This section surveys numerous applications that exemplify fuzzy k-nn techniques.  What

all these applications have in common is that, in one way or another, they all perform fuzzy logic

based matching and exploit descriptions of salient attributes and combinations of attributes

acquired from domain experts using fuzzy words.  Fuzzy logic directly translates expert

descriptions of salient features into a fuzzy set based similarity-measuring algorithms.

Applications surveyed include weather prediction, mergers and acquisitions, residential

property valuation, cash flow forecasting, shoe fashion database retrieval, colour matching in

plastics production, criminal profiling, identifying freshwater invertebrates, interpreting

electronic nose data, and manufacturing failure analysis.

2.4.1 Weather prediction

We built a fuzzy k-nearest neighbors based weather prediction system (Hansen and

Riordan 1998).  The fuzzy k-nn method is used to acquire knowledge about what salient features

of continuous-vector, unique temporal cases indicate significant similarity between cases.  Such

knowledge is encoded in a similarity-measuring function and thereby used to retrieve k nearest

neighbors from a large database.  Predictions for the present case are made from a weighted

median of the outcomes of analogous past cases, the k-nn.  Past cases are weighted according to

their degree of similarity to the present case.

Numerically described attributes are fuzzified into memberships in specific fuzzy sets

before being compared.  The fuzzy k-nn system fits fuzzy sets to the attributes.  Because we

search for nearest neighbors for a particular case, the centers of triangular fuzzy sets are centered

on the attribute values of that particular case.

                                                                                                                                                             

increases.  For example, an input may be represented by two fuzzy sets (low and high) or more precisely by
thee fuzzy sets (low, medium, and high).
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2.4.2 Mergers and acquisitions

Bonissone and Ayub (1992) developed a system to predict the outcome of mergers and

acquisitions.  The system could give guidance about what companies might be worth acquiring.

The case base has descriptions of companies where attributes describe various economic

conditions.  Descriptions of past cases refer to five temporal phases: initial conditions, pre-

tender, tender-negotiation, outcome, and long-term results.  Descriptions of new cases (i.e.,

prospective purchases) refer to only initial conditions.  The system determines the degree to

which new cases match past good purchases and bad purchases.

The motivation for applying CBR, as is typical, is to cope with a domain where the

domain theory is weak and where knowledge acquisition is difficult.

The motivation for applying fuzzy methods to CBR is to deal with uncertainty in four

phases of the CBR process: semantics of abstract features used to describe cases, evaluation of

the similarity measures computed across these features, determination of relevancy and saliency

of the similar cases, and the solution-adaptation phase.

The system is divided into two parts, one dealing with domain knowledge, the other

dealing with case representation.  Domain knowledge is organized into three hierarchies: objects,

action, and goals.

Individual abstract features are described by applying domain rules to numerous surface

features.  This object-oriented strategy of bundling related attributes together reduces the

dimensionality and thus the complexity of the problem. 50

2.4.3 Residential property valuation

Bonissone and Cheetham (1997) developed a system to valuate residential properties.

The case base has descriptions of houses in mortgage packages and descriptions of current

market conditions.  The case base describes hundreds of thousands of real estate transactions.

Mortgage packages are investment tools that may contain up to 1000 mortgages.  Real estate

markets are volatile.  A valuation system for mortgages helps an investor to keep better track of

their real estate investment.

Previous efforts to automate valuation failed to capture the intrinsic imprecision in sale

comparison.  Imprecision surrounds terms in the problem: “find the most similar houses, located

                                                     
50 We used such an object-oriented strategy in (Hansen and Riordan 1998) and use it again in this thesis.
For example, wind is an abstract attribute of a weather case that is composed of surface attributes such as
wind speed, wind direction, and "wind run."
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close to the subject property, sold not too long ago; and selecting a balanced subset of the most

promising comparables to derive the final estimate.”

Fuzzy sets to measure these properties were constructed by interviewing experts, asking

them to describe their preferences for various properties, and making fuzzy sets accordingly.

The system was designed to permit the similarity-measuring fuzzy sets to relax (i.e., widen) if the

retrieved set was too small.

Our fuzzy k-nn approach, using triangular sets which taper off asymptotically, avoids the

problem of retrieving too small a set.  The efficacy of this approach, compared to using support-

limited trapezoidal sets, is also implied by the conclusion of Liao et al. (1998): “the more the

fuzziness in the case attributes, the more the power of the [fuzzy similarity] measure.”

The fuzzy CBR system was tested against three other methods: a statistical formula, a

fuzzy-neural net, and a human appraiser.  The fuzzy CBR system was more accurate than the first

two objective methods and a bit less accurate than a human appraiser.

Bonissone and Cheetham (1997) emphasize the efficacy of the system at producing

confidence value assessments to accompany house value estimates.  The distribution of the

retrieved analogs itself implies how much confidence to place in an estimate.

Bonissone and Cheetham (1997) emphasize the transparency of the system workings.

Every step used to determine a house value can be reviewed and readily understood by users.

The decisions and weights correspond to intuitively understandable expressions that coincide

with the specifications of the users, the interviewed experts.  Thus fuzzy CBR achieves a unique

form of explanation capability.

2.4.4 Cash flow forecasting

Weber-Lee et al. (1995) combine fuzzy logic and CBR in a cash flow prediction system.

The most original aspect of their system, as they point out, is the use of a fuzzy Sugeno integral

to calculate the similarity of two financial situations rather than the usual weighted mean

approach. 51  This integral calculates the overall similarity according to the “max of the min” of

the individual attribute to attribute similarities.

The “max-min” scheme is the simplest possible aggregation scheme for additive fuzzy

systems, and it has the mathematical properties of associatively, reflexivity, symmetry,

                                                     
51 Note that Weber-Lee et al. (1995) refer to the weighted mean approach as it is used for individual similar
case recognition, not for subsequent solution composition.  In our system, we will use a sort of weighted
mean to compose solutions base on an analog ensemble of weather cases.
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transitivity (Zimmerman 1991).  There are more complicated and sophisticated aggregation

schemes, for dealing with additive systems and fuzzy rule bases, 52 but Weber-Lee et al. (1995)

use the simplifying assumption that overall similarity is as only strong as the weakest individual

similarity and their encouraging results support this assumption.  We regard weather the same

way when we apply the fuzzy k-nn method.

Weber-Lee et al. (1995) make an appealing argument for using CBR to forecast cash

flow, an argument which could easily be adapted to the problem for forecasting weather, as

follows.

The task of forecasting cash flows when performed by a human being works adequately
under similar and sequential contexts.  The expert aggregates information [such] as a
possible recession and becomes subjectively pessimistic..  After a while, the expert cannot
remember if the pessimistic approach used, for instance, 5 years ago, actually turned out
to be effective, and if so, how effective.  The CBR approach overcomes this shortcoming.

One of the main attributes used by Weber-Lee et al. (1995) for CBR-based prediction is that of

season itself.  Weather patterns change continually as seasons change, and memories of weather

situations fade over time.  Weather analogs from similar dates in previous years are better

analogs than analogs from more recent dates in previous months.  Analog forecasting preserves

relevant memories of analogous situations from previous years.

2.4.5 Shoe fashion database retrieval

In an application for the shoe fashion industry, Main et al. (1996) used fuzzy feature

vectors to enable retrieval of patterns for shoes similar to actual or idealized shoes.  The motive

was to rapidly manufacture “new” styles of shoes, to imitate currently popular models, by

recycling old similar styles.  After testing the fuzzy features approach for case selection, they

found that “the cases retrieved matched the current case the closest in at least 95% of the tests.”

The fuzzy vector based retrieval agreed with experts’ judgements of what constituted a high,

medium, or low dimension on various parts of shoes

2.4.6 Colour matching in plastics production

Cheetham and Graf (1997) built a system to perform color matching in plastic

manufacturing.  The goal was to determine an optimal combination of colorants to create a

                                                     
52 The Standard Additive Model (SAM) or Center of Gravity (COG) are commonly used fuzzy aggregation
schemes (Kosko 1997), schemes used to fuzzify and defuzzify system throughput.  COG and SAM are
commonly used to compute the output of fuzzy rule bases consisting of 1000’s of rules.  Figure 9 on page
64 compares the SAM approach and the “max-of-the-min” approach.
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specific color of plastic and to do so at minimal cost.  The case base consisted of past “recipes”

and results.  The new case consisted of a color sample to be matched.  The system was used for

two years at a number of General Electric Plastics sites and lead to significant cost savings.

Fuzzy logic was used to measure the level of satisfaction with several diverse factors,

such as match under different lighting conditions, cost of colorants, and opacity of resultant

plastic.

The most important concept in the system is that of a fuzzy preference function.  Cases

are compared and the differences are recorded with real numbers.  An expert specifies thresholds

that correspond to linguistic terms describing the quality of match.  Fuzzy sets for attribute

comparisons are constructed accordingly.  Five such fuzzy sets enable the simultaneous

comparison of five heterogeneous attributes.

Each of the [five properties] is based on different scales of units.  By mapping each of
these properties to a global scale through the use of fuzzy preferences and linguistic terms
such as Excellent, Good, Fair and Poor, it becomes possible to compare one attribute with
another.

This integrated approach to comparison of diverse attributes is similar to the fuzzy k-nn

weather prediction system.  For example, 10 degrees difference is near for wind direction, 5

degrees difference is near for temperature, and so on.

2.4.7 Criminal profiling

In an application to profile criminals, Lefley and Austin (1997) used fuzzy methods to

describe criminals modus operendi (MO).  An MO is a learned pattern of criminal behavior

which a particular habitual criminal tends to follow and which detectives use to identify the

particular criminal.  Such behaviors are weakly indicative individually and strongly indicative

collectively.  Unsolved crimes may be solved by associating known offenders with the crimes

and investigating those offenders more closely.

Their algorithm used a fuzzy distance measure of several attributes, forward-chaining

logic, and calculated similarity according to a summation of individual attribute results.

In practice, the application was simple.  Records of criminals and crimes were obtained

and several crimes were presented as “unsolved” (i.e., the criminals were not identified).

Students reviewed the records all the records and transferred what they read into a questionnaire,

a form which the system could process directly.  The values in the form were fuzzy descriptors of

criminal attributes.  In experiments, they found that most students transferred common written

criminal records into the fuzzy forms consistently.
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Their system performance was encouraging.  “Unsolved” crimes were measured as most

similar to solved crimes of the actual offender in 70% of the trials.  Their conclusion emphasizes

the ease, effectiveness and envisioned portability of the matching system.

The system exploits available expertise.  The system questionnaires were designed based

on important attributes suggested by criminologists.

2.4.8 Identifying freshwater invertebrates

Winder et al. (1997) identify freshwater invertebrates using an approach which is very

similar to that used by Lefley and Austin (1997) to identify criminals.  Their system identifies

samples of invertebrates based on questions answered using a database of characteristics of

species suggested by taxonomists.

Again, knowledge is acquired from experts about salient attributes with which to identify

individuals, in this case species rather than criminals.  Thereafter system construction and use is

straightforward.  Construction requires converting the knowledge of salient attributes into fuzzy

aggregate matching operations.  To use the system, the user fills in a questionnaire.

Winder et al. (1997) also note how their fuzzy CBR approach to measuring similarity

aims to associate new cases with similar families.  As we noted above (subsection 2.3.4, page

62), fuzzy k-nn is a useful tool for the problem of recognizing family resemblance between items,

a challenge for AI described by Dreyfus (1992).

2.4.9 Interpreting electronic nose data

Singh (1999) explains how to reduce the ambiguity of classification of a new point by

centering a fuzzy k-nn algorithm on the new point.  Using the single fuzzy nearest-neighbor is

most effective for two pattern recognition problems, a benchmark problem and a realistic

problem. 53  The algorithm labels a new case according to the label of its single nearest neighbor,

as measured with fuzzy operations, rather than according to the majority of the labels of its k

nearest neighbors (k-nn).  The crisp k-nn approach they refer to, basically, draws a hypersphere

around the point to be labeled, counts the various labels of points within the hypersphere, and

assigns to the point to be labeled the label which describes the majority of the points in the

                                                     
53 The two pattern recognition problems attempted by Singh (1999) are detection of spirals in a commonly
attempted benchmark problem, and the realistic problem of identification of different blends of coffee
according to data collected from an “electronic nose.”  Singh (1999) does not refer to (Keller et al. 1985)
but the basic approach of the fuzzy k-nn algorithm is the same.   Singh (1999) does not deal with temporal
aspects of the spiral data.
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hypersphere.  There are three problems with this crisp k-nn approach: it results in confusion if

there is no clear majority in the hypersphere, results are sensitive to the radius of the

hypersphere, and it works poorly for nonlinear data where clusters of different types often

overlap near the point to be labeled.  The fuzzy single nearest neighbor approach is better, Singh

(1999) claims, because it detects the “truly nearest neighbor.” 54

2.4.10 Electronics manufacturing diagnosis

Göös et al. (1999) describe a fuzzy monitoring and case-based diagnosis tool for an

electronics manufacturing process.  The tool provides online quality control during

manufacturing of electronics parts.  Components of parts are measured during manufacturing.

Each part (case) is described by 19 attributes, most of these being measured attributes.  Three

values are associated with each attribute: a lower threshold for acceptance, and optimal value,

and an upper threshold for acceptance.  The quality of a part is determined according to the

degree to which its attributes collectively are similar or dissimilar to the theoretically optimal

part.

The case base consists of descriptions of past low quality parts along with descriptions of

the cause and remedy of each such situation.  When a new part is diagnosed as of low quality, a

case base search is performed.  A nearest neighbors algorithm with expert-specified weights is

used to determine overall quality of the part.  Continuous measurements map to linguistic (fuzzy)

descriptions of quality.

Case base searches lead to one of two sorts of useful results.  First, either a near neighbor

is found and the cause of the defect is generally diagnosed and a remedy found.  Or, second, a

new sort of defect is identified, the user is alerted to this anomaly, and the user revises the case

base accordingly.

Results and user feedback from initial fielding of the system are quite positive (Göös et

al. 1999).  The method is effective at finding manufacturing defects.  Users readily accept the

results, appreciate the opportunity to learn from the results, and appreciate the opportunity to, in

                                                     
54 Singh (1999) argues, somewhat rhetorically, and with an idealized diagram, for the superiority of a single
fuzzy nearest neighbor approach over a non-fuzzy k-nn approach, but tests the single fuzzy nearest neighbor
approach against a neural network.  The results are encouraging, but still leave us to wonder, if considering
only nearest neighbor approaches, what the effects are of reducing k—to as low as k=1? (Singh (1999)
intuitively selects k=1.) and what are the effects using of fuzzy measures versus crisp measures.  We will
examine the effects of varying k and of varying fuzziness in our experiments (Section 4.2, page 102).
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effect, teach the system when anomalous new defects are detected and the case base needs to be

revised.

Tobin et al. (1998) use a fuzzy k-nn classification algorithm to enable a system for

semiconductor defect detection.  Their algorithm follows closely from the fuzzy k-nn algorithm

formulation of Keller et al. (1985).  The training set of cases consists of records of defective

semiconductors.  Each record has 35 measured features (measured with optical instruments) and

one of 14 types of classes.  Classes describe the type of defect and the corrective measure, and

are determined by experts.  Their system showed a “similar efficacy to the human counterpart.”

It worked well in the assembly line environment, allowing for a automatic 100% inspection rate,

thus the system was judged useful for quality control.

2.5 CBR and fuzzy logic based weather prediction systems

This following three subsections survey weather prediction systems that use CBR, fuzzy

logic, and the combination of both.  The section Additional References on Analog Forecasting in

Meteorology, at the end of this thesis, lists meteorology articles that describe the challenges of

implementing analog forecasting.  We do not survey these articles here as they are too far from

the thesis subjects of CBR and fuzzy logic.

2.5.1 CBR weather prediction systems

Jones and Roydhouse (1995) are among the few who have applied intelligent retrieval to

archived meteorological data and referred to CBR. 55  Their motive is the same as ours: to exploit

large meteorological archives.  Jones and Roydhouse (1995) use a structured database approach

for retrieving similar, large-scale weather maps (maps that contain abstract structures, such as a

high pressure area or a cold front), whereas we use a relational database approach for retrieving

similar, local-scale weather reports (reports that contain related variables, such as cloud ceiling

height 200 feet and visibility in fog 0.5 miles).

Jones and Roydhouse (1995) describe a prototype system called Metvuw which is

intended to help forecasters predict the evolution of cold fronts over the Tasman Sea, between

Australia and New Zealand.  Forecasting fronts in this area is difficult because there are few

weather observations in that area, thus humans are poorly informed and computer models are

                                                     
55 Jones and Roydhouse (1995) cite two of their own previous related work.  We have found no subsequent
papers by these authors describing related work.
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poorly initialized.  They suggest that examination of the evolution of analogous previous weather

situations may help forecasters predict for the present situation.

Forecasters provide Metvuw with high-level descriptions of current large-scale,

atmospheric pressure patterns (high and low pressure centers and values) and Metvuw retrieves

similar cases (i.e., relevant and analogous cases)  from a database of 2500 stored cases.  Jones

and Roydhouse (1995) use a similarity-measuring algorithm which assesses various salient

pressure features suggested by meteorologists. 56

To minimize computational cost, Jones and Roydhouse (1995) use a two-stage screening

process.  The stage selects a few candidate cases using a set of rough tests.  The second stage

ranks the few selected cases using more a costly but accurate process of similarity assessment.

Such a strategy is often referred to in CBR as  “MAC/FAC,” short for Many Are Collected, Few

Are Chosen” (as described in subsection 2.1.1 page 42).  We use such a strategy when we

implement the fuzzy k-nn system (described in Chapter 3).

Although the Metvuw system showed some promise, its development apparently ceased

five years ago.  We can only speculate as to why, but perhaps one of the following qualities,

which we will try to avoid, contributed to cessation of the system’s development.

• Non-autonomy.  “Metvuw Workbench assists the retrieval of relevant past cases, but

leaves their adaptation and interpretation to the user.” (Jones and Roydhouse 1995).

Forecasters are already deluged with data to interpret as it is.  As Conway (1989)

points, systems must be convenient and fast for forecasters if they are to be useful.

We envision fuzzy k-nn weather prediction as being able to operate in two modes:

autonomous guidance-offering, and user-driven weather archive querying.

• Data-intensive.  Jones and Roydhouse (1995) expected that a 10-year data set for

Metvuw would require approximately one Gigabyte to store, whereas Hansen and

Riordan (1998) found that a 36-year data set required 6 Megabytes to store.  Metvuw

requires roughly three orders of magnitude more data storage because it its cases

consist of images describing a large part of the globe, whereas the cases in (Hansen

and Riordan 1998) consist of condensed numerical weather observations for one

point, an airport.

                                                     
56 Salient pressure features suggested by meteorologists include: locations of pressure mimima, aligned
overlap of minima-bounding rectangles, aspect ratio, density, area, and intensity (Jones and Roydhouse
1995).
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Bardossy et al. (1995) describe another algorithm that uses a fuzzy-rule base and which

has basically the same purpose as that of (Jones and Roydhouse 1995), that is, classification of

atmospheric circulation patterns.  Their fuzzy rule based algorithm is better at pattern recognition

than that of Metvuw.  Bardossy et al. (1995) reliably determine the degrees of membership of

each new pressure pattern in a set of prototypical templates of pressure patterns, whereas, Jones

and Roydhouse (1995) represent all pressure patterns symbolically with trees and this causes

misleading results (e.g., slight deepening of low pressure systems causes totally different tree

representation to result).  In terms of database strategy, Bardossy et al. (1995) use a more of a

relational database strategy and Jones and Roydhouse (1995) use more of a structural database

strategy.

2.5.2 Fuzzy weather prediction systems

Fuzzy logic has so far seldom been used to predict weather, even though such an

application was proposed at least 19 years ago, 57 fuzzy logic itself was first described 35 years

ago (Zadeh 1965), and fuzzy logic has during recent few years become a mainstream technique in

a variety of environmental domains.  It represents linguistically-expressed domain knowledge

and operates on diverse forms of continuous data—such types of knowledge and data are typical

in environmental problems.  Environmental domains where fuzzy logic presently operates

effectively include agriculture, climatology, earthquakes, ecology, fisheries, geography, geology,

hydrology, meteorology, mining, natural resources, oceanography, petroleum industry, risk

analysis, and waste management (Hansen et al. 1999).

                                                     
57 Silvert (1981) proposed the use of fuzzy logic to formulate and evaluate predictions and proposed its use
for verification of weather predictions. [The same "novel" idea occurred to me 15 years later in 1996.]  He
identified four types of prediction: “sharp (‘this horse will win the race’), fuzzy (‘this horse will do well’),
conditional (‘this horse will do well if it doesn’t rain’), and probabilistic (‘odds on this horse are…’)”.

Note that the fuzzy type of prediction can, through design, emulate the other types of prediction.  If
“do well” equates to “winning,” then the prediction is sharp.  If additional conditions are added, then the
prediction is conditional.  If “do well” equates to “odds of winning over 90%,” then the prediction is
probabilistic.

We acknowledge the simmering (cooling?) debate between proponents of probability and
proponents of fuzzy logic over the distinct merits of each methodology.  However, we point out that
probability and fuzzy logic are two distinct means to the same end—the formation of expectation—and thus
complementary.  Probability forms expectation based on frequencies of past events.  Fuzzy logic forms
expectation on based on vague rules; these rules can take into account past events, as we do in this thesis,
and thus, fuzzy logic can be made to emulate probability.  In any case, current indications are that both
methodologies will persist, coexist, and provide complementary approaches for problem solving (Bezdek
1994).
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Maner and Joyce (1997) built a weather prediction system, called WXSYS.  They

obtained simple weather prediction rules (i.e., weather lore) from experts and weather almanacs,

and implemented these rules in a system using a fuzzy logic rule base.  For example, one rule

they used is:  “Weather will be generally clear when the wind shifts to a westerly direction.  The

greatest change occurs when the wind shifts from east through south to west.”

According to Maner and Joyce (1997), there are three reasons why fuzzy logic seems

ideally suited for weather forecasting:

• The phrases used in conventional forecasts are inherently and intentionally fuzzy.

• “Fuzzy logic is known to work in this domain.”

• “The weather domain meets the general conditions under which a fuzzy solution is

thought to be appropriate.”

Fuzzy logic has been used to build expert systems to predict fog and to predict wind.

Sujitjorn et al. (1994) and Murtha (1995) separately built systems to predict fog at an airport.

Hadjimichael et al. (1996) and Kuciauskas et al. (1998) together built a fuzzy system, called

MEDEX, for forecasting gale force winds in the Mediterranean.  All of these systems are

conceptually based on the classic fuzzy rule base approach to fuzzy systems. 58  How they differ

is in the particular fuzzy rules elicited from experts.  For example, the MEDEX system uses rules

of the form “if pressure gradient is very large…then…”, and so on.

We built a fuzzy expert system for critiquing marine forecasts, called SIGMAR 59

(Hansen 1997).  Like the above fuzzy expert systems, expert-specified fuzzy sets are at its core.

Unlike the above fuzzy expert systems, it does not process a series of fuzzy rules (e.g., if A and B

then C).  Instead it measures similarity using fuzzy sets: it measures the similarity between a

current valid marine forecast and the actual marine observations directly by using fuzzy sets,

rather than, as is usually done, indirectly by using categories (e.g., “Observation in category 1

and forecast in category 2.”).

Marine forecasters use observations to determine how the accuracy of a forecast is

faring.  If unforecast significant conditions develop, then forecasts must be amended as soon as

possible.  The task of monitoring weather observations and assessing their significance in terms

                                                     
58  The fuzzy rule base approach to expert systems is well explained by Zimmerman (1991).  Kosko (1997)
refers to the rule base as a “fuzzy associative memory” and describes the process of rule resolution as firing
all rules partially and in parallel and take a balanced average.  Viot (1993) describes a fuzzy rule based
system balance an inverted pendulum (a benchmark problem for fuzzy systems) and convincingly
demonstrates how simple the system is by providing compilable C code for the system on one page.
59 SIGMAR is short for Significant Information Generated from Marine Area Reports.
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of the current forecast is called “keeping a weather watch.”  For weather forecasting operations,

the task is necessary and important.  For weather forecasters, the task of continuously monitoring

a never-ending list of ever-changing numbers is challenging during periods of rapidly changing

weather and boring during periods of slowly changing weather.

SIGMAR continuously critiques marine forecasts: it automatically monitors a stream of

real-time of observations, assesses where and to what degree a forecast is accurate or inaccurate,

and reports to forecasters.  SIGMAR helps marine forecasters to quickly identify any wind

reports that contradict the marine forecast.  This helps forecasters to respond quickly in situations

where marine forecasts need to be amended.

Actually, fuzzy expert systems and CBR systems for weather prediction overlap.  Tag et

al. (1996), following the example of Bardossy et al. (1995), used fuzzy logic to automate the

recognition of patterns of upper air wind flow.  This pattern information was used, in a CBR-like

way, as predictive input in a fuzzy expert system (MEDEX, described in the previous

subsection).

Clustering techniques can be useful for CBR.  Fuzzy clustering has been used to emulate

human expert classification of climate (McBratney and Moore 1985) and  climatological

circulation patterns (Bardossy et al. 1995).

To the best of our knowledge, our current line of work is the only work which combines

the three topics of fuzzy logic, CBR and weather prediction in a single system (Hansen and

Riordan 1998).  Given a present incomplete weather case to predict for, we used a fuzzy k-nn

algorithm to find similar past weather cases in a huge weather archive to make predictions from.

Granted, the individual three methods are, by themselves, basic: using fuzzy sets to

measure similarity is a basic application of fuzzy set theory, k-nearest neighbors is a basic CBR

method, and analog forecasting is a primitive weather prediction technique.  But when these

three methods were combined into one system, with an expert’s knowledge of what features are

salient and how, with the knowledge encoded as fuzzy sets, and the system was provided with a

huge archive of weather observations, the results were encouraging.  The system’s prediction

accuracy was measured with standard meteorological statistics and compared to a benchmark

prediction technique, persistence.  In realistic simulations, the system was significantly more

accurate.  This following three chapters build upon the work begun in (Hansen and Riordan

1998).
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3. System for Fuzzy k-Nearest Neighbors Based Weather

Prediction

In Chapter 1, we explained how retrieval of similar cases relates to CBR, fuzzy logic, and

weather prediction—CBR depends on retrieval of similar cases, fuzzy logic enables retrieval of

similar cases, and the weather prediction technique of analog forecasting depends on retrieval of

similar cases—and explained how case adaptation and case authoring are regarded as main

challenges in CBR system development.  In Chapter 2, we described how, to overcome the case

adaptation and case authoring problems of CBR system development, three strategies have been

proposed—knowledge acquisition, partial matching, and use of very large cases bases—and

surveyed the literature to provide a basis for using the fuzzy k-nn technique to combine these

strategies into one technique.

In this chapter, we describe the WIND-1 system.  The system uses a fuzzy k-nn algorithm

designed to emulate a weather forecasting expert applying the weather prediction technique of

analog forecasting and, thereby, shows how fuzzy logic based methods enable a CBR system

developer to impart the perceptiveness and case-discriminating ability of a domain expert to

CBR.  We describe the necessary details in as general terms as general as possible.  Though the

WIND-1 system is specifically designed for weather prediction, similar systems should be

applicable to other kinds of analog prediction problems where large databases exist and

perceptive experts are available to help to tune similarity-measuring fuzzy sets.

The WIND-1 system consists of two main parts:

• A large database of weather observations.  The database is a weather archive of over

300,000 consecutive hourly weather observations.

• A fuzzy k-nn algorithm.  The algorithm measures the similarity between temporal

cases, past and present intervals of weather observations.  The algorithm is tuned

with the help of a domain expert, in our case, a weather forecaster experienced in

noting similarities between cases.

Section 3.1 describes the database: an archive of airport weather observations.  Section

3.2 describes our fuzzy k-nn algorithm which searches the database for analogs.  Section 3.3

compares our fuzzy k-nn approach case-based reasoning with two previous approaches.  In the

next Chapter 4, we will present a set of experiments and results based upon the WIND-1 system.
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3.1 Large database of airport weather observations

Airport weather observations (METAR’s) are routinely made at all major airports on the

every hour on the hour.  Our database consists of a flat-file archive of 315,576 consecutive

hourly weather observations from Halifax International Airport. 60 These observations are from

the 36-year period from 1961 to 1996, inclusive.  Based on the advice of a weather forecaster, we

represent each hour with 12 selected attributes: 11 continuous attributes and 1 nominal attribute,

precipitation, as shown in Figure 10.

The file size is 6 Megabytes.  The file is in a standard, column-delimited ASCII format,

hence no preprocessing is needed.  Very few values are missing and most of the reports appear to

be reliable (i.e., plausible), hence no additional quality control is applied to the file prior to its

use.

3.2 Fuzzy k-nn algorithm

This section explains how we built an expert-emulating, similarity-measuring fuzzy k-nn

algorithm, or function.  The similarity-measuring function, sim, is used to find k nearest

neighbors.  The function is given two cases, each identified by unique time indexes t1 and t2, and

it returns a real number proportional to the degree of similarity of the two cases such that

                                                     
60 Halifax International Airport is located in Nova Scotia, Canada at coordinates 44º 53’ North 63º 30’ West
at an elevation of 145 meters above sea level.  The airport is situated 30 kilometers north from the Atlantic
coast near the top of gently sloping terrain.

Category Attribute Units

temporal " date Julian date of year (wraps around)
" hour hours offset from sunrise/sunset

cloud ceiling " cloud amount(s) tenths of cloud cover (for each layer)
and visibility " cloud ceiling height height in metres of ≥ 6/10ths cloud cover

" visibility horizontal visibility in metres
wind " wind direction degrees from true north

" wind speed knots
precipitation " precipitation type “nil”,  “rain”,  “snow”, etc.

" precipitation intensity “nil”, “light”, “moderate”, “heavy”
spread and " dew point temperature degrees Celsius
temperature " dry bulb temperature degrees Celsius
pressure " pressure trend kiloPascal ⋅ hour -1

Figure 10.  Twelve attributes of an airport weather observation (METAR).
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0.0 < sim(t1, t2) ≤ 1.0

Because all weather cases are unique and because the value of sim is calculated to double

precision, sim can identify exactly k nearest neighbors.  There are no null search results and no

ties.

The three steps to construct and use the algorithm are:

1. Configure similarity-measuring function.

2. Traverse case base to find k-nn.

3. Make prediction based on weighted median of k-nn.

The first step is performed only once and the second and third steps are performed every time

weather prediction is made.  All the algorithm design work is done in the first step.  The steps are

described in the following three subsections (3.2.1, 3.2.2, and 3.2.3).

3.2.1 Configure similarity-measuring function

To configure the function, an expert weather forecaster uses a fuzzy vocabulary to

provide knowledge about how to perform case comparisons.  A detailed sample questionnaire for

knowledge acquisition is shown in Appendix A.  The knowledge acquisition procedure is

described in general terms in the following two subsections.

3.2.1.1 Expert specifies attributes to compare and the order in which they are to be

compared

An expert suggests which attributes are important for matching.  For the WIND-1

system, we selected the 12 attributes listed above in Figure 10.

An object is to summarily rule a case out of contention with the fewest possible number

of tests.  Hence, based on advice of the domain expert, tests most likely to discriminate are

performed first.  For instance, the expert suggests that the season attribute similarity be tested

before the temperature attribute similarity.  Winter cases are very unlike Summer cases, but a

winter case and a summer case may both have temperatures of 10º Celsius.  Therefore, date of

the year is a better discriminator than temperature.

When cases are compared, their attributes are compared in the same order that they are

listed in in Figure 10, namely: date of the year, hour of the day, cloud amount(s), cloud ceiling

height, visibility, wind direction, wind speed, precipitation type, precipitation intensity, dew
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point temperature, dry bulb temperature, and pressure trend.  When initial tests indicate great

dissimilarity, subsequent tests are dispensed with.

3.2.1.2 Expert describes fuzzy relationships between attributes

This is the crucial step in system design.  As the expert describes fuzzy relationships

between attributes using fuzzy words, corresponding fuzzy sets are constructed to emulate expert

case comparison.  Appendix A shows a sample questionnaire for knowledge acquisition that a

developer could ask a domain expert complete in order to obtain knowledge of how to evaluate

degree of similarity between various comparable attributes of cases.  Thereby, the expert imparts

their sense of discrimination via fuzzy words into fuzzy sets, and we acquire knowledge about

how to compare three kinds of attributes: continuous numbers, absolute numbers (i.e.,

magnitude), and nominal attributes (e.g., snow and rain) .  And we acquire knowledge about how

to weight recency, or in other words, how to forget older dissimilarities.  This acquired

knowledge is represented below in four functions —µc, µa, µn, µf—in the following four sections

in Figure 11, Figure 12, Figure 13, and Figure 14 (b).

Continuous-number attributes

For each continuous attribute, xi, the expert specifies a value of ci which is the threshold

for considering two such attributes to be near each other.  A fuzzy set is constructed accordingly

as shown in Figure 11.
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Comparing two homogeneous, continuous attributes with a fuzzy set, as shown in Figure

11, is a basic application of fuzzy sets.  Multiple attributes of cases can be weighed collectively

by aggregating the result of a set of such operations (e.g., taking the “max of the min”).  Each

fuzzy set enables the sim function to match based on individual attributes.  As sets are added for

multiple attributes, the sim function gains the ability to match more complicated cases.

Fuzzy sets such as the one shown in Figure 11 are used to compare the attributes of date

of the year, hour of the day, wind direction, dew point temperature, dry bulb temperature, and

pressure trend.

Date of the year and hour of the day are important temporal attributes because weather

strongly correlates to seasonal and diurnal cycles.  The closer these attributes of two cases are to

each other, the more analogous the cases are.  For example, two cases are considered near each

other if they are within 30 Julian days of each other and their offsets from sunrise/sunset are

within one hour of each other.

µµµµc
(x 1 - x 2 )

0.00

0.25

0.50

0.75

1.00

-5c -4c -3c -2c -c 0 c 2c 3c 4c 5c

x 1 - x 2

very

slightly

near

Figure 11.  Fuzzy set for comparing continuous-number attributes.

Similarity-measuring function emulates how the expert evaluates the degree to

which continuous attributes are near each other.  The expert specifies a value

of c corresponding near such that µ(x1 - x2) ≥ 0.50 ⇔ “x1 is near x2”.  Tails

taper off asymptotically towards 0.0, such that µ(x) > 0.0, which prevents null

results from searches.
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Absolute-number attributes

If attributes are limited to the zero-or-above range (e.g., absolute wind speed), then it is

their relative magnitudes that are important for matching.  Therefore, they are compared using a

modified ratio operation, with special routines to handle for values near zero, as shown in Figure

12.
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(x 1 , x 2 )
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0.25-0.5

0-0.25

Figure 12.  Fuzzy decision surface for comparing absolute-number attributes.  Fuzzy similarity-

measuring surface measures how similar two absolute values are to each other.  The above

surface determines the similarity of two wind speeds, x1 and x2, where speed is measured in

knots.  Wind speed values above 32 are truncated to 32.
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The fuzzy decision surface shown in Figure 12 is used to compare the attribute of wind

speed.  Surfaces similar to the one shown in Figure 12 are used to compare the attributes of cloud

amount(s), cloud ceiling height, and visibility.

The table of fuzzy relationships shown in Figure 13 is used to compare the attribute of

precipitation type.  A table similar to that shown in Figure 13 is used to compare the attribute of

precipitation intensity.

Forget older attributes

The similarity of two cases is determined according to their newest and their most

dissimilar attributes. 61  The older attributes are in compared cases—that is, the farther back in

time they are from their respective time-zeroes— the less weight is accorded to their

dissimilarity.  In effect, this is the same as forgetting older attributes in comparing cases.  Such a

forgetting function is shown in Figure 14 (b).  After two comparable attributes of two cases are

                                                     
61 Equating highest similarity with lowest dissimilarity harks back to the argument that a chain is only as
strong as its weakest link, as explained in Section 2.2.3 on page 52.

Nominal attributes

To compare nominal attributes, such as precipitation type, a similarity measuring table (a

symmetric matrix) is used of the form shown in Figure 13.

Nil Drizzle Showers Rain Flurries Snow …
Nil 1.00 0.02 0.03 0.01 0.03 0.01 …

Drizzle 0.02 1.00 0.50 0.50 0.10 0.05 …
Showers 0.03 0.50 1.00 0.75 0.10 0.10 …

Rain 0.01 0.50 0.75 1.00 0.10 0.25 …
Flurries 0.03 0.10 0.10 0.10 1.00 0.75 …

Snow 0.01 0.05 0.10 0.25 0.75 1.00 …
… … … … … … … …

µµµµn(type1, type2)

Figure 13.  Fuzzy relationships between nominal attributes.  Similarity-measuring

table measures how similar two nominal attributes are to each other.
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compared to yield a similarity value, µ′, the value of  µ′ is moderated using the forgetting

function, such that

sim = max {µ′, µf(t)}

So, with reference to Figure 14 (b), we see that 3-hour-old attributes can never imply sim

< 0.6, whereas time-zero attributes or auxiliary predictors (with t > 0), can imply sim ≅  0.0.

The more recent an attribute is, the more important it is for matching.  Likewise, any

auxiliary predictors, such as NWP, are important for matching.  Each case has a temporal span of

24 hours composed of three parts: 12 recent past hours, 1 time-zero hour, and 12 future hours.

(These three parts of a case are illustrated ahead in Figure 16, page 87.)  The contributions to

similarity measurement of cases, from corresponding hours of cases, are weighted to maximize

the contribution of recent hours and to maximize the contribution of any available foreknowledge

(e.g., prevision guidance from NWP), as shown in Figure 14.
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(a)  Recency weighting function.  The newer attributes in compared cases are, the more their

similarity is weighted.  Greatest weight is given to recent attributes and future attributes,

such as auxiliary predictors from NWP.
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(b)  Forgetting function.  This function is the complement of the above recency weighting

function, Figure 14 (a).  The newer attributes in compared cases are, the stricter their

similarity comparison.  Corresponding hour-to-hour comparisons are “maxed” with the

forgetting function.  Thus, for example, comparison of attributes 3 hours prior to time-zero

will result in similarity µ ≥ 0.6; whereas, comparison of attributes measured at time-zero, or

predicted by other means for after time-zero, may result in similarity µ = 0.0.  Thus, the

function emulates the forgetting of less relevant older attributes in case-to case comparison.

Figure 14.  Fuzzy weighting for recency of attributes.
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3.2.2 Traverse case base to find k-nn

After sim has been configured as explained above, it can be used to make weather

predictions provided with a database of weather cases, a present incomplete weather case, and

whatever foresight-offering guidance is available.  Appendix B shows a worked-out, specific

example of the procedure for making a prediction based on the fuzzy k-nn.  The rest of this

subsection illustrates the procedure generally.

First, for each hour of two cases being compared, the overall degree of similarity of their

attributes is computed as the minimum value of µ for the compared attributes.

µhour-to-hour(t) = min{µc
1, … , µa

i, … , µn
m }    for   t = t0-12 … t0

Second, the overall degree of the similarity of two cases is computed as the minimum value of all

the hours’ values of µ where each hour’s value of µ is tempered by the “forgetting function.”

µcase-to-case(t0) = min{max{µhour-to-hour(t0-12),µf(-12)}, … , max{µhour-to-hour(t0),µf(0)}}

The database of cases is represented conceptually in Figure 15.  Each block represents an

observation taken at one instant in time.  Observations are taken at regular intervals.  So, the

series of blocks represents the time series.

The parts of a temporal case are shown in Figure 16.  A temporal case is a short segment

of a long record of a multidimensional, real-world process—in our case, weather observations.

Past cases in the database are complete temporal cases.  The present case is an “incomplete

temporal case”—it’s missing the “future” part.

a1(1)
a2(1)

:
am(1)

a1(2)
a2(2)

:
am(2)

…
a1(n)
a2(n)

:
am(n)

Figure 15.  Structure of cases (i.e., weather

observations).  m attributes per observation, n

observations.  Observation is synonymous

with tuple.
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The time series of past cases is traversed and temporal cases are measured for degree of

similarity with the present case using sim as shown in Figure 17.

"""""""""" time """"""""→

recent past time zero future

a(t-12) a(t-11) … a(t) … a(t+12)

Figure 16.  Temporal case.  A series of weather observations centered on time t.  Thus t is

the specific case index.  Series spans from 12 hours before to 12 hours after time t.

Past
case

Present
case

Levels of tests
in sim function

a1(i-12)
:

am(i-12)

a1(j-12)
:

am(j-12)
: ! : ! case-to-case

a1(i+12)
:

am(i+12)

a1(j+12)
:

am(j+12)

(series-to-series)

a1(i)
:

am(i)
!

a1(j)
:

am(j)
! tuple-to-tuple

(vector-to-vector)

a1(i) → a1(j) → attribute-to-attribute

Figure 17.  Temporal cases are compared in nested operations at three levels.

Specific case indexes are i and j, the “time-zeros” of the cases being compared.

The “→→→→” symbol denotes a comparison of two attributes, a fuzzy operation of one

of the four kinds described above in subsection 3.2.1.2.  The “!!!!” symbol denotes

an aggregation of numerous such fuzzy comparisons (e.g., max of the min).
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The overall similarity of two temporal cases is equal to the lowest similarity of any

comparable elements (i.e., equal to the lowest attribute-to-attribute similarity).  The sim function

performs tests progressively, following the efficiently discriminating sequence advised by the

expert (subsection 3.2.1.1).  The similarity measuring operation is halted if the similarity falls

below the α-level (i.e., the current minimum threshold to join the analog set).  As better and

better analogs are collected during the traversal, the α-level rises accordingly.  As the α-level

rises, the case-to-case comparison can be aborted after fewer and fewer attribute-to-attribute

comparisons.  Thus, although the above 3-level-deep case comparison algorithm is potentially of

Order(n3) complexity, in practice we expect it to be much closer to Order(n) complexity.

The analogs are collected and α is recorded in a linked list data structure as shown in

Figure 18.

list_length
max_sim
min_sim

→ index[1], sim[1]
↓

index[2], sim[2]
Contraints ↓
0 ≤ list_length ≤ k :
max_sim = α ↓
min_sim > 0.0 index[k], sim[k]

#

Figure 18.  Linked list of k-nn, or weather analogs.  The

similarity of each case is represented by sim[i].  By design,

0.0 < sim[i] ≤ 1.0.  The least similar member in the set has

overall similarity equal to sim[k], thus α-level = sim[k].

list_length is the number of cases in the list.

max_sim and min_sim describe the similarity values of the most

similar and least similar cases in the list respectively.

index[i] identifies the time of the temporal case.
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3.2.3 Make prediction based on weighted median of k-nn

The predictands are cloud ceiling and visibility.  Predictions are made by weighted

median of the k most analogous cases, the k-nn.  Each case is weighted according to its similarity

to the present case: 0.0 < sim[i] ≤ 1.0.

A worked-out example of how the fuzzy k-nn algorithm measures the similarity of two

temporal cases with a present case and makes predictions based on the fuzzy k-nn is shown in

Appendix B.

3.3 Comparison to previous approaches

This section compares our fuzzy k-nn algorithm with a classic fuzzy nearest prototype

algorithm and with a classic model of CBR.

3.3.1 Fuzzy nearest prototype algorithm

Compare our fuzzy nearest prototype algorithm in Figure 19 and Figure 20 with that of

Keller et al. (1985), shown in Figure 8 (page 60).
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Let W = {A1, A2, …, An} be the set of n past cases representing n potential analogs.

//  x is the present case
main(x)
{

α = 0.0
list_lenth = 0

//  traverse past case base of n cases searching for analogs
for i = 1 to n
{

//  test all past cases for admissibility into the k-nn set
//  α is the admission threshold
//  if similarity of new case > α
//  then new case is saved and α rises accordingly
if (sim(Ai, x) > α)
{

α = sim(Ai, x)

//  Update the linked list of k-nn, shown in Figure 18 on page 88
insert_to_ordered_k-nn_list(Ai)

//  limit list length to k
list_length = list_length + 1
if list_length > k
{

remove_from_ordered_k-nn_list_least_similar_member()
list_length = list_length - 1

}
}

}
return(weighted median of k-nn)

}

where sim(Ai, x) is represented by the function shown in Figure 20.

Figure 19.  Cyclic algorithm for WIND-1 in pseudocode.  Nearest prototype algorithm centered

on the present case and with α-level progressively rising as case base is traversed and better

analogs accumulate in ordered k-nn list.  This algorithm contrasts with that of Keller et al.

(1985), which is shown in Figure 8 on page 60.
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Our algorithm differs from that of Keller et al. (1985) mainly in the following way:

Rather than calculating the distance from the new case to every selected prototypical case and

then, accordingly, calculating the degrees of membership of the new case in all the prototypical

categories as (Keller et al. 1985) does, our algorithm calculates the degrees of similarity between

the present case and its k nearest neighbors.  Only the k instances of Ai that are nearest to the

present case are assigned values for degree of similarity to the present case.  Our approach is, in

a sense, a reversal of that of Keller et al.:  Rather than calculating the degrees of membership of

the present case in selected categories, which are based on prototypes, we calculate the degrees

of membership of past cases in the one-off “category” that is based on the present case.

As the case base is traversed, and each prospective analog Ai is subjected to a series of

similarity tests, cases are either summarily ruled out of contention or finally ruled into the k-nn

double sim(Ai, x)
{

//  result = 1.0 implies similar, result = 0.0 implies dissimilar
result = 1.0

//  traverse series from most recent tuple to least recent tuple
//  h is the number of hours in a temporal case
for h = tuples_in_series down to 1)
{

for (m = 1 to attributes_in_tuple)
{

//  µm is an attribute-specific fuzzy comparison operation,
//  i.e, µa, µ c, and µ n as shown Figure 11, Figure 12, and Figure 13
//  on pages 81–83
result = µm(Ai[h, m], x[h, m])

//  Reduce weight of old attributes in case
//  result approaches 1.0 for non-recent attributes
//  In effect, calculate maximum of result with
//  of fuzzy set shown in Figure 14 (b) on page 85.
weight_for_recency(result)
if (result < α)
return (0.0)

}
}
return(result)

}

Figure 20.  Similarity-measuring function: sim.
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set.  As the case base is traversed, and better and better analogs are collected, the α- level rises

accordingly.  This strategy enables computational savings.  Because  we are only interested in

identifying exactly k nearest neighbors, most of the past cases can be summarily ruled out of

contention.  Rather than fully calculating the similarities between a new case and all predefined

prototypes, as illustrated in Figure 21 (b), it predicts the outcome of the new case based on a few

nearest neighbors, as illustrated in Figure 21 (c).

(a)  Points represent past cases.

X represents new case.

(b)  New case X is classified according to

distance from selected prototypes, P1-P4.

(c)  New case is predicted for based on

outcome of nearest neighbors, A1-A4 (i.e.,

the “analog ensemble.”)

Figure 21.  Classification based on prototypes contrasted with prediction based on nearest

neighbors.  (a) A number of fully-described points and one new partly-described point labelled as

X.  (b) Classification of a new case based on selected prototypes.  (c) Prediction for a new case

based on k nearest neighbors.
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3.3.2 Classic case-based reasoning

Compare our case-based reasoning flowchart, shown in Figure 22, with that of Riesbeck

and Schank (1989), shown in Figure 1 (page 4).  The differences between classic CBR and fuzzy

CBR are listed in Figure 23.

Inference Engine Knowledge Base

Problem → Input
↓

Many → Retrieve ← Fuzzy Matching
Automatically ↓ Function

Recorded k-nn
Cases ↓

Adapt ← Adaptation Rule:
↓ Calculate Median of

Solution ← Median and k-nearest neighbors
Confidence ← Spread

Figure 22.  Fuzzy case-based reasoning.  This flowchart contrasts with that

of Riesbeck and Schank (1989), which resembles the one shown in Figure 1

(page 4).  The case authoring problem is avoided by using many

automatically-recorded cases and a fuzzy matching function.  The case

adaptation problem is avoided by using many automatically-recorded cases

(with supposed good analogs) and by simply calculating a median of k-

nearest neighbors.
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Classic CBR Fuzzy CBR

• Uses abstract indexing rules to determine

classes.

• Describes cases with their numerical

dimensions and nominal types.

• Revises the case memory with tested

solutions.

• Uses a large case base of continuously

accumulating actual cases.

• Attempts to repair solutions in a

potentially endless loop.

• Bases solution on a weighted median of

numerous similar cases and associates a

confidence in the solution based on the

spread of those cases.

• Perform the series of operations:

Proposed Solution → Test → Failure

Description → Explain → Predictive

Features → Indexing Rules.

• Obtains knowledge about predictive

features through knowledge acquisition

from domain expert who explains

similarity with fuzzy words.

Figure 23.  Differences between classic CBR and fuzzy CBR.
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4. Experiments

The aim of our experiments is to test our hypothesis. 62  The previous chapter described the

WIND-1 system, its components, and how it is configured.  The algorithm for WIND-1 (shown

in Figure 19 on page 90) is coded in C and implemented on a Hewlett Packard 9000 series

workstation.

In this chapter, we evaluate the performance of the WIND-1 system by conducting a

series of experiments, as is common current practice in machine learning algorithm validation,

rather than simply by determining the plausibility of the results, as used to be common practice

(Langly 1996).

This chapter describes a series of experiments that test the prediction accuracy of the

WIND-1 system.  Results of WIND-1 are measured using standard tests of prediction accuracy,

presented in the form of graphs, and interpreted.

Results are presented in five sections.  In section 4.1, we vary the attribute set in order to

determine the relative predictive value of various predictors.  In section 4.2, we vary the number

of analogs used to make forecasts (k) in order to evaluate the tradeoff between using a smaller

number more analogous cases and a larger number of less analogous cases and, thereby, select a

good value for k.  In section 4.3, we vary the size of the case base in order to assess the

importance of having a large case base.  In section 4.4, we decrease the level of fuzziness in the

fuzzy sets in the fuzzy k-nn algorithm in order to assess the importance of fuzziness itself in

similarity measurement  And finally, in section 4.5, we test the prediction accuracy of WIND-1

against a benchmark prediction method, persistence.

Experiment design

Each experiment consists of a forecasting scenario.  Five sets of experiments are

conducted.  In each set of experiments we systematically change the fixed parameters of WIND-1

and measure the resultant effects on forecast accuracy.  The fixed parameters (independent

variables) are: the attribute set, the number of analogs used to make forecasts, the size of the case

base, and the fuzzy membership functions (i.e., level of fuzziness in the similarity-measuring

sets).  The output (dependent variables) are, for each individual forecast, forecast values of cloud

                                                     
62 Hypothesis: Querying a large database of weather observations for past weather cases similar to a present
case using a fuzzy k-nearest neighbors algorithm that is designed and tuned with the help of a weather
forecasting expert can increase the accuracy of predictions of cloud ceiling and visibility at an airport.
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ceiling and visibility, and, for each set of experiments, a summary of the accuracy of all the

forecasts made.

The first four sets of experiments serve a dual purpose.  First, they test the contribution

of individual components of the system.  Second, they suggest how to adjust these components in

order to maximize the accuracy of the system.  The last set of experiments pits the system against

a competitive prediction technique, persistence forecasting. 63

In most of the sets of experiments, the first 35 years of weather data (1961-1995) is used

as the case base and the final year of data (1996) is used as a source of “new cases.”  Such data

segregation prevents sharing of information between past and new cases.  In one set of

experiments (Section 4.3), however, we test the effect of reducing the size of the case base.

In each set of experiments, 1000 hours are chosen at random from the 1996 weather

archive and are each used as an hour to produce a forecast for.  So, in each set of experiments,

1000 simulated forecasts are produced.  For purposes of comparison, the same 1000 randomly-

chosen hours are used in each set of experiments.  This is a control so that the effect of varying

other input can be tested.

In each individual experiment, a case is taken from the 1996 data and is used as a present

case.  It is input to WIND-1.  During the forecast process, the outcome of the present case is

hidden from WIND-1.  WIND-1 produces a forecast for the present case based on the outcomes

of the k-nn in the case base, the k most analogous past cases for the present case.  After the

forecast process, the accuracy of the forecast is verified by comparing the forecast with the then

unhidden outcome of the present case. 64

                                                     
63 To be useful for airport weather prediction, a system should produce results more accurate than the
results of persistence forecasting.  To forecast persistence, one simply takes the known values of ceiling and
visibility at time-zero, the beginning time of a forecast period, and assumes that they will not change
through the forecast period,

Dallavalle and Dagastaro (1995) compared the skill of persistence-based forecasts with the skill of
forecasts produced locally by the National Weather Service and found that “persistence forecasts appeared
to have higher skill than the local forecasts for the 3-hour projection.”  When skill was considered for the
six-hour projection, neither method was clearly superior; persistence had a higher Critical Success Index,
but locally produced forecasts had a higher Heidke skill score.
64 During case-to-case comparison, we hid the outcomes of the present case so as not to “contaminate” our
results.  We did not give WIND-1 any prevision of attributes to guide its search for analogs.  However, we
envision that a future operational version of this system (WIND-2) will incorporate available prevision of
attributes (e.g., imminent wind shifts or precipitation onsets predicted by other means) to guide its search
for analogs.
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Verification method

Each forecast is verified using standard measures of weather forecast accuracy, measures

that are described in detail by Stanski et al. (1999), and summarized as follows.

Forecasts are verified according to the accuracy of forecasts of three significant flying

categories, categories that are defined in Figure 24.

Three sorts of prediction-versus-actual outcomes are counted: hits, false alarms, and

misses.  If an event is predicted and it occurs, it counts as a hit.  If an event is predicted and it

does not occur, it counts as a false alarm.  If an event is not predicted and it does occur, it counts

as a miss.  How outcomes of forecast and observed events are classified is shown in Figure 25.

From the frequencies of these outcomes, three meteorological statistics are calculated:

Reliability (i.e., Frequency of Hits, or FOH), Probability of Detection (POD), and False Alarm

Ratio (FAR).  Values are calculated as shown in Figure 26.

ceiling (m) visibility (km) flying category

   < 200 or      < 3.2 ⇒ below alternate

   ≥ 200 and      ≥ 3.2 ⇒ alternate

   ≥ 330 and      ≥ 4.8 ⇒ VFR

Figure 24.  Flying categories.

OBSERVED

YES NO

FORECAST YES hit false alarm

NO miss non-event

Figure 25.  How outcomes of forecast and observed

events are classified.
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To ensure that WIND-1 verified its forecasts correctly, we double-checked the

verification results.  We had WIND-1 conduct a small set of experiments, based on only 10

forecasts, verified the forecast accuracy manually, and compared our manually-generated results

with WIND-1’s automatically-generated results.  The results were the same.

The purpose of the first set of  experiments is to determine the relative predictive value

of various attributes (i.e., predictors) which are recommended by a forecasting expert.  Seven sets

of such attributes are listed in Figure 27.

Reliability = FOH = hits / ( hits + false alarms)

Probability of Detection = POD = hits / ( hits + misses)

False Alarm Ratio = FAR = false alarms / (hits + false alarms)

Figure 26.  Formulae for verification of forecasts.  Values of hits, false alarms,

and misses are the summed outcomes of 1000 simulated forecasts.  High levels of

prediction accuracy are indicated by high Reliability, high Probability of

Detection, and low False Alarm Ratio.

Set

number

Abbreviation Attribute set

1 cig & vis cloud ceiling and visibility (cig & vis)

2 pres + cig&vis pressure tendency, cig & vis

3 pcpn + cig&vis precipitation type and intensity, cig & vis

4 temps + cig&vis dry bulb temperature and dew point temperature, cig & vis

5 time + cig&vis offset from sunrise/sunset and date of year,

cig & vis

6 wind + cig&vis wind direction and speed, cig & vis

7 all all of the above

Figure 27.  Attribute sets for matching.  All attribute sets include cloud ceiling and visibility

(cig & vis).  The first set consists of only ceiling and visibility, the next five sets each consist

of ceiling and visibility plus one other type of attribute, and the last set consists of all available

attributes.
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Because our objective is to predict ceiling and visibility, and because ceiling and

visibility are known to be strongly autocorrelated, the attributes of ceiling and visibility are

included in each attribute set.  Figure 28 presents the results of varying the attribute set.
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4.1 Effect of varying attribute set

The benchmarks for accuracy in each of the charts in Figure 28 are the left-most bars in

each graph, the accuracy resulting from matching cases based only on their cloud ceiling and

visibility attributes.

As attributes are added to the similarity measurement, the resulting accuracy of the

forecasts tends to increase.
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(c)  Probability of Detection

of “below alternate”

(d)  False Alarm Ratio

of “below alternate”

Figure 28.  Effect of varying attribute set.  Graphed values are average accuracy of 0-to-6-hour

predictions.  System configuration: k =16, length of case base = 35 years.
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The best combination of attributes tested is the complete set of available attributes, the

right-most bars in each graph.  This combination results in the lowest False Alarm Ratio of below

alternate (Figure 28 (d)) and ties for the highest values of probability of detection of below

alternate, reliability of alternate, and reliability of VFR (Figure 28 (a), (b), and (c)).

The reliability of VFR is barely affected by the combination of attributes used (Figure 28

(b)).  This is probably due to the climatological preponderance of VFR conditions in weather

(conditions that are specified by cloud ceiling and visibility) and the strictness of the matching in

the cloud ceiling and visibility conditions.  VFR is the largest cluster of weather conditions and it

is defined by the attributes of ceiling and visibility, so the contribution of other attributes is

relatively small.  In other words, it takes little skill to forecast the persistence of a most common

condition: primary details (cloud ceiling and visibility) are sufficient to make accurate forecasts,

and secondary details add little.
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4.2 Effect of varying k

The purpose of this experiment was to assess the effect of varying the number of

analogous past cases used to make forecasts (“k” in the expression “fuzzy k-nn”) in order to

evaluate the tradeoff between using a smaller number more analogous cases and a larger number

of less analogous cases, and thereby select a good value for k.  We systematically varied the

value of k and the results of this experiment are shown in Figure 29.

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256

k

R
el

ia
b

ili
ty

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256

k

R
el

ia
b

ili
ty

(a)  Reliability of “alternate” (b)  Reliability of “VFR”

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256

k

P
O

D

0%

10%

20%

30%

1 2 4 8 16 32 64 128 256

k

F
A

R

(c)  Probability of Detection

of “below alternate”
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Figure 29.  Effect of varying k.  Predictions are based on weighted median value of k nearest

neighbors.  Graphed values are average accuracy of 0-to-6-hour predictions.  System

configuration: length of case base = 35 years.
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There is a peak in accuracy resulting from using 16 nearest-neighbor cases to form

predictions, or about 0.005% (16 / 300,000) of all the available cases (Figure 29).  This suggests

the fuzzy k-nn algorithm is effective at identifying and ranking analogous cases; on average, the

16 nearest neighbors are more analogous and (and thus better bases for prediction) than the 256

nearest neighbors.

Accuracy tends to decrease as k decreases from 16 to 1.  This suggests that it is more

effective to base forecasts on small set of analogs than it is to base forecasts on single best

analog.  A similar effect is observed with “ensemble forecasting” technique in the field of

numerical weather prediction in meteorology. 65

All the graphs show a peak for k=2.  You might wonder why a peak would occur in all

four charts (recall that that high values of reliability and probability of detection imply high

accuracy and high values of false alarm ratio imply low inaccuracy).  The reason is that

reliability, probability of detection, false alarm ratio tend to rise together because of the way they

are formulated.  In practice, forecasters try achieve a balance between high reliability, high

probability of detection, and low false alarm ratio. 66

                                                     
65 Sivillo et al. (1997) define an ensemble forecast as: “a collection (an ensemble) of [numerical-weather-
prediction-based] forecasts that all verify at the same time. These forecasts are regarded as possible
scenarios given the uncertainty associated with forecasting.”  Ensembles are made by running competitive
and/or slightly-differently-initialized numerical weather prediction models concurrently.  Sivillo et al.
(1997) explain how the average of an ensemble of forecasts tends to be more accurate than single-scenario
forecasts.
66 To maximize reliability of forecasting and the probability of detection of an event, one simply needs to
forecast the event to happen every time.  The drawback with this strategy is that the false alarm ratio would
rise at the same time.  Forecasters refer to this strategy as "crying wolf."  If one always raises an alarm, one
will never miss an event, but one will also raise too many false alarms.
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4.3 Effect of varying size of case base

The purpose of this experiment is to determine effect of varying the size of the case base

in order to assess the importance of having a large case base.  As the size of the case base

increases, supposedly, more and more potential good analogs are available for the fuzzy k-nn

algorithm upon which to base predictions.  This experiment addresses the question: “Is the fuzzy

k-nn predictions method effective with a small case base, or does it require a large case base?”
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Figure 30.  Effect of varying size of case base.  Graphed values are average accuracy of 0-to-6-

hour predictions.  System configuration: k = 16.
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This question is of practical importance because sizes of weather archives vary greatly from one

airport to another.  The size of the case base is varied and the results are shown in Figure 30.

Accuracy generally rises as the size of the case base size increases from 1 year to 32

years, although there appears to be a slight dip in accuracy for a case base size of 8 years (Figure

30 (b) and (c)).  The general rise in accuracy suggests that having a large case base is beneficial.

The slight dip in accuracy for a case base size of 8 years—though probably insignificant at 1%—

may suggest that, for the purposes of predicting for weather situations in the year 1996, the four-

year period 1992-1995 contains a higher proportion of good analogs than the 8-year period 1988-

1995.

Significantly, the relatively high accuracy with a case base size of 4 years suggests that

the WIND-1 system could be useful for predicting at airports with relatively small weather

archives.  Most airports have recorded weather for at least 4 years.
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4.4 Effect of varying fuzzy set membership function
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 """" """"    Simple persistence

Figure 31.  Effect of varying fuzzy set membership function.  Fuzziness is eliminated by

converting elicited fuzzy sets into crisp sets.  Graphed values are accuracy of prediction for each

hour in the 0-to-12-hour projection period.  System configuration: k=16, length of case base = 35

years.
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The purpose of this set of experiments is to test the effect of using fuzzy sets in the

similarity-measuring function, as opposed to using non-fuzzy sets.  When we propose to use

fuzzy sets in a similarity-measuring algorithm, we are often asked: “Why not use non-fuzzy

category based similarity measures?”  This set of experiments addresses that question by

substituting non-fuzzy (i.e., crisp) sets for the previously used fuzzy sets.  To eliminate fuzziness,

we modify the function µfuzzy, as follows.

if µfuzzy < 0.5 then µcrisp = 0.0

else µcrisp = 1.0.

Thus, for two cases, every attribute at every hour compared yields a similarity measure equal to 0

or 1.  Then the overall similarity of the cases is determined by taking the average of all the

attributes values.  The results are shown in Figure 31.

Non-fuzzy k-nn based predictions are slightly more accurate than simple persistence

based forecasts in terms of reliability and probability of detection (Figure 31 (a), (b) and (c)), and

slightly less accurate in terms of false alarm ratio (Figure 31 (d)).  The results supports what

aviation weather forecasters commonly believe: It is difficult to beat simple persistence

(forecasting “no change”) in the short-term.

The non-fuzzy k-nn prediction scheme is essentially a form of conditional-persistence-

based forecasting. 67  For cases to be in the nearest-neighbor set of the case being forecast for, the

condition is that their attributes must fall within discrete, plus-or-minus ranges of the attributes

of the case being forecast for.  The results suggest that it is even difficult for conditional

persistence to beat simple persistence.

                                                     
67 Conditional-persistence based forecasting is referred to in meteorology as "climatological persistence"
(Vislocky and Fritsch 1997).
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4.5 System versus persistence

The purpose of this experiment is to compare the prediction accuracy of WIND-1 with

that of the benchmark prediction method, persistence.  The results are shown in Figure 32.
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Figure 32.  Accuracy of system compared to benchmark technique, persistence.  Graphed values

are accuracy of prediction for each hour in the 0-to-12-hour projection period.  System

configuration: k=16, length of case base = 35 years.
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Fuzzy k-nn based predictions are significantly more accurate than simple persistence

based forecasts in terms of reliability and probability of detection (Figure 32 (a), (b) and (c)), and

generally more accurate in terms of false alarm ratio (Figure 32 (d)).

Fuzzy k-nn based predictions are significantly more accurate than non-fuzzy based

predictions (compare Figure 32 with Figure 31).  The only variation between the two

experimental setups is the nature of the membership functions used to compare attributes.  The

fuzzy k-nn method uses fuzzy membership functions that span certain ranges around the case

being forecast for; whereas, the non-fuzzy method uses 0-1-0 functions centered across the same

ranges.  This suggests that, compared to the accuracy of simple persistence, the significantly

higher accuracy of fuzzy k-nn based forecasts is attributable to the use of fuzzy sets to measure

similarity as opposed to using crisp sets.  To the best of our knowledge, all previous methods

used to measure similarity between weather cases have used only crisp sets.
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5. Conclusion

Based on our literature review, experiments, and the results presented in the previous chapter, we

conclude that querying a large database of weather observations for past weather cases similar to

a present case using a fuzzy k-nearest neighbors (fuzzy k-nn) algorithm that is designed and tuned

with the help of a weather forecasting expert can increase the accuracy of predictions of cloud

ceiling and visibility at an airport.

We have proposed, implemented, and tested a fuzzy k-nn based prediction system called

WIND-1.  Its unique component is an expertly-tuned fuzzy k-nn algorithm with a temporal

dimension.  We tested it with the problem of producing 6-hour predictions of cloud ceiling and

visibility at an airport given a database of over 300,000 consecutive hourly airport weather

observations  (36 years of record).  Its prediction accuracy was measured with standard

meteorological statistics and compared to a benchmark prediction technique, persistence.  In

realistic simulations, WIND-1 was significantly more accurate.  WIND-1 produced forecasts at

the rate of about one per minute.

The fuzzy k-nn based prediction method is significantly more accurate than the non-

fuzzy based prediction method.  The only variation between the two methods is the nature of the

membership functions used to compare attributes of cases.  The fuzzy k-nn method uses fuzzy

membership functions that span certain ranges around the case being forecast for, whereas the

non-fuzzy method uses 0-1-0 functions centered across the same ranges.  This suggests that,

compared to the accuracy of simple persistence, the significantly higher accuracy of fuzzy k-nn

based forecasts is attributable to the use of fuzzy sets to measure similarity as opposed to using

crisp sets.  To the best of our knowledge, all previous methods used to measure similarity

between weather cases have used only crisp sets.

Of significance to case based reasoning: We have shown how fuzzy logic can impart to

case-based reasoning the perceptiveness and case-discriminating ability of a domain expert.  The

fuzzy k-nn technique described in this thesis retrieves similar cases by emulating a domain expert

who understands and interprets similar cases.  The main contribution of fuzzy logic to case-based

reasoning is that it enables us to use common words to directly acquire domain knowledge about

feature salience.  This knowledge enables us to retrieve a few most similar cases from a large

temporal database, which in turn helps us to avoid the problems of case adaptation and case

authoring.
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The fuzzy k-nn algorithm, even though it is of approximate Order(n) complexity, makes

superior predictions with practical speed—with less than one minute of computation.  This speed

is achieved by strategically ordering the steps in a case-to-case similarity-measuring test and by

stopping any test as soon as a step reveals that a case is dissimilar enough to be ruled out of the

k-nn set without the need for further tests.  For example, suppose we have a database of n past

temporal cases.  And suppose each case is described by m attributes and is p time units long, thus

each case is described by m·p attributes.  To measure the similarity of every past case, we would

need to perform n·m·p individual tests.  However, we are only interested in finding the k most

similar cases, and most cases can be ruled out of contention with a single test.  So, the number of

tests we need to perform is much closer to the order of n than it is to the order of n·m·p.

Of significance to meteorology and the aviation industry: Such a fuzzy k-nn weather

prediction system can improve the technique of persistence climatology (PC) by achieving direct,

efficient, expert-like comparison of past and present weather cases.  PC is a sort of analog

forecasting technique that is widely recognized as a formidable benchmark for short-range

weather prediction.  Previous PC systems have had two built-in constraints: they represented

cases in terms of the memberships of their attributes in predefined categories and they referred to

a preselected combination of attributes (i.e., defined and selected before receiving the precise and

numerous details of present cases).  The proposed fuzzy k-nn system compares past and present

cases directly and precisely in terms of their numerous salient attributes.  The fuzzy k-nn method

is not tied to specific categories nor is it constrained to using only a specific limited set of

predictors.  Such a system for making airport weather predictions will let us tap many, large,

unused archives of airport weather observations, ready repositories of temporal cases.  This will

help to make airport weather predictions more accurate, which will make air travel safer and

make airlines more profitable.

We plan to pursue this research and improve the WIND-1 system in the following ways.

• Test the system with other airports.

• Enable the WIND system to learn autonomously.

• Incorporate additional predictive information, such as user-provided hints,

projections of weather radar images of precipitation, and projections of satellite

images of cloud.
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Appendix A: Sample Questionnaire for Knowledge Acquisition

Knowledge acquisition is performed simply by having the expert fill in a questionnaire such as

the one shown below.  When such a questionnaire is completed, it contains all the information

needed to construct the fuzzy sets and to order the fuzzy operations that shown above in Section

3.2 (pg. 78).  The grayed-out fields would normally be blank but we have inserted sample values

for the WIND-1 configuration.

Part A: Attributes and order of comparison

Specify the attributes to compare and the order in which they are to be compared.

date of the year, hour of the day, cloud amount, cloud ceiling height, visibility, wind direction,

wind speed, precipitation type, precipitation intensity, dew point temperature, dry bulb

temperature, pressure trend

Part B: Continuous-number attributes

List the continuous-number attributes—those with values that can be positive or negative and

which are compared in terms of their relative difference—and for each, specify values of

difference that signify slightly near, near, and very near.  If you choose to fill in only the middle

column, then, by default, the threshold for slightly near will be twice that for near, and the

threshold for very near will be half that for near.

Attribute slightly near near very near

date of the year 60 days 30 days 10 days

hour of the day 2 hours 1 hours 0.5 hours

wind direction 40 degrees 20 degrees 10 degrees

dew point temperature 4 degrees 2 degrees 1 degree

dry bulb temperature 8 degrees 4 degrees 2 degree

pressure trend 0.20 kPa ⋅ hr -1 0.10 kPa ⋅ hr -1 0.05 kPa ⋅ hr -1
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Part C: Absolute-number attributes

List the absolute-number attributes—those with values that can be only equal to zero or positive

numbers, and which are compared in terms of their relative magnitudes—and for each possible

pair, use numbers in the range (0.0…1.0] to specify how near they are to each other.  The number

0.25 corresponds to slightly near, the number 0.50 corresponds to near, and the number 0.75

corresponds to very near.

Attribute

wind speed 0 1.00

1 0.75 1.00

2 0.50 0.75 1.00

3 0.25 0.50 0.75 1.00

4 0.10 0.25 0.50 0.75 1.00

… … … … … … …

0 1 2 3 4 …

cloud amount …

cloud ceiling height …

visibility …
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68 The nominal attribute table shows the "distance" between any two nominal attributes in the same way that
a distance table on a highway map shows distances between towns.  For illustration purposes, the table
describes fuzzy relationships between only four common precipitation types.  The actual WIND-1
configuration table specifies fuzzy relationships between 24 possible precipitation types (e.g, freezing rain,
ice pellets, etc.).

Part D: Nominal attributes

List the nominal attributes, and for each possible pair, use numbers in the range (0.0…1.0] to

specify how near they are to each other  The number 0.25 corresponds to slightly near, the

number 0.50 corresponds to near, and the number 0.75 corresponds to very near. 68

Attribute

precipitation type Nil 1.00

Drizzle 0.02 1.00

Showers 0.03 0.50 1.00

Rain 0.01 0.50 0.75 1.00

… … … … …

Nil Drizzle Showers Rain …

precipitation

intensity

…
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Part E: Recency

For each possible time step in comparable temporal cases, use numbers in the range (0.0…1.0] to

specify the lowest level of similarity that can be attributed to attributes from that time step.  The

number 0.25 corresponds to slightly near, the number 0.50 corresponds to near, and the number

0.75 corresponds to very near.

  Time

  in case

Minimum

similarity

  Time

  in case

Minimum

similarity

… … t-0 0.00

t-12 0.96 t+1 0.00

t-11 0.95 t+2 0.00

t-10 0.94 t+3 0.00

t-9 0.93 t+4 0.00

t-8 0.92 t+5 0.00

t-7 0.91 t+6 0.00

t-6 0.90 t+7 0.00

t-5 0.80 t+8 0.00

t-4 0.70 t+9 0.00

t-3 0.60 t+10 0.00

t-2 0.40 t+11 0.00

t-1 0.20 t+12 0.00

… …
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Appendix B: A Worked-out Example of Fuzzy k-nn Algorithm

for Prediction

We hope that the results achieved by the fuzzy k-nn algorithm are reproducible, in weather

prediction and in other applications.  Towards that end, this appendix presents a step-by-step,

worked-out example of the fuzzy k-nn algorithm described in Section 3.2 (pg. 78).

We begin by assuming the similarity-measuring function has been configured as

explained in Section 3.2 and in Appendix A.  The three main processes in using the algorithm are

as follows.

1. Measure similarity of temporal cases.

2. Traverse case base to find k-nn.

3. Make prediction based on weighted median of k-nn.

The first process, is the most original, so this appendix presents a detailed example of

how similarity of cases is calculated.  The following example pertains to weather but it technique

ought to generalize to any sort of application which describes temporal cases in terms of

continuous, absolute, and nominal attributes.

Measure similarity

A present case is composed of actual weather observations are shown in Figure 33.
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Three simplified weather cases are shown in Figure 34.  Case 1 represents the present

case to predict for; it is drawn from the data above in Figure 33.  Cases 2 and 3 represent two

analogs from the weather archive to make predictions from; they are hypothetical.  For purposes

of illustration, only seven-hour-long cases are considered and only three weather attributes are

presented: cloud ceiling, wind direction, and precipitation type; these attributes are, respectively,

absolute, continuous, and nominal (as described in Section 3.2, pg. 78).  Longer cases with more

attributes would be handled by straightforward extension of the technique shown.

CYHZ 120000Z 19010G16KT 1 1/2SM SHRA BR OVC007 21/20 A2990 RMK SF8 RERA SLP125=

CYHZ 120100Z 20011KT 1 1/2SM -SHRA BR BKN003 OVC007 21/20 A2991 RMK SF5SF3 SLP127=

CYHZ 120046Z 20012KT 3SM -SHRA BR OVC007 RMK SF8 RERA=

CYHZ 120200Z 23011KT 8SM BKN004 OVC011 21/20 A2992 RMK SF5SC3 SLP130=

CYHZ 120249Z 23008KT 2SM BR OVC007 RMK SF8 CIG RGD=

CYHZ 120300Z 23008KT 2SM BR OVC005 21/20 A2994 RMK SF8 SLP139=

CYHZ 120400Z 21009KT 10SM FEW007 OVC076 20/19 A2993 RMK SF2AC6 SLP135=

CYHZ 120500Z 32006KT 10SM BKN010 OVC075 19/18 A2995 RMK SC5AC3 SLP140=

CYHZ 120600Z 32005KT 12SM BKN008 OVC210 19/18 A2996 RMK SC6CI2 SLP143=

CYHZ 120700Z 33005KT 15SM FEW008 BKN250 18/17 A2997 RMK SF1CI1 SLP148=

CYHZ 120800Z 33006KT 15SM VCFG SKC 17/16 A2997 RMK VSBY NW 1/2 SLP149=

CYHZ 120900Z 31007KT 10SM PRFG FEW100 BKN250 16/16 A2998 RMK AC1CI1 VSBY LWR W SLP152=

CYHZ 121000Z 29005KT 12SM BKN250 16/15 A3001 RMK CI5 SLP161=

CYHZ 121100Z 29009KT 12SM BKN250 16/15 A3002 RMK CI5 SLP166=

CYHZ 121200Z 29006KT 15SM BKN250 16/14 A3003 RMK CI5 SLP170=

Figure 33.  Actual weather observations (METAR code) for Halifax International Airport for

the period 00:00 to 12:00 UTC 12 September 1999 (obtained from the Texas A&M Weather

Interface website,

http://www.met.tamu.edu/personnel/students/weather/weather_interface.html, downloaded

September 12, 1999).
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The three attributes presented Figure 34 are sufficient to demonstrate each of fuzzy

similarity-measuring operations described in Section 3.2, namely µa, µc, µn, and µf(t) as shown in

Figure 35 and Figure 36.

case 1 case 2 case 3

time

cloud

ceiling

(dam)

wind

dirn.

(deg.)

pcpn. cloud

ceiling

(dam)

wind

dirn.

(deg.)

pcpn. cloud

ceiling

(dam)

wind

dirn.

(deg.)

pcpn.

t-3 9 200 shwrs 12 190 rain 9 170 drzl

t-2 12 230 nil 15 220 nil 9 210 nil

t-1 15 230 nil 21 220 nil 12 220 nil

t-0 21 210 nil 30 220 nil 15 210 nil

t+1 (30) 320 nil 24 330 nil 21 310 nil

t+2 (24) 320 nil 30 330 nil 24 310 nil

t+3 (999) 330 nil 999 340 nil 750 320 nil

Figure 34.  Present case (1) and two analogs (2 and 3).  Present case is weather from

Halifax International Airport for the period 01:00 to 07:00 UTC 14 September 1999.

Analogs are contrived for illustration purposes.  The t-0 observation corresponds to a

forecast start time of 04:00 UTC.  In a forecast setting, the grayed-out observations in

case 1 are not known, however auxiliary predictors (guidance) for the values of wind

direction and precipitation are commonly available.
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The grayed-out values of wind direction and precipitation for the future parts of the

present case (case 1) in Figure 35 are prevision obtained from auxiliary predictors, such as

computer models or humans.  As explained earlier, existing methods forecast large-scale

time

ceiling wind dirn. pcpn.

case 1 case 2 µa
2

case 1 case 2 µc
2

case 1 case 2 µn
2

t-3 9 12 0.75 200 190 0.88 shwrs rain 0.75

t-2 12 15 0.80 230 220 0.88 nil nil 1.00

t-1 15 21 0.71 230 220 0.88 nil nil 1.00

t-0 21 30 0.70 210 220 0.88 nil nil 1.00

t+1 ? 240 - 320 330 0.88 nil nil 1.00

t+2 ? 300 - 320 330 0.88 nil nil 1.00

t+3 ? 999 - 330 340 0.88 nil nil 1.00

(a)  Comparing case 2 to case 1, µµµµa
2 is the similarity between their absolute values of

ceiling height, µµµµc
2 is the similarity between their continuous values of wind

direction and µµµµn
2 is the similarity between their nominal types of precipitation.

time

ceiling wind dirn. pcpn.

case 1 case 3 µa
3

case 1 case 3 µc
3

case 1 case 3 µn
3

t-3 9 9 1.00 200 170 0.38 shwrs drzl 0.50

t-2 12 9 0.75 230 210 0.50 nil nil 1.00

t-1 15 12 0.80 230 220 0.88 nil nil 1.00

t-0 21 15 0.71 210 210 1.00 nil nil 1.00

t+1 ? 21 - 320 310 0.88 nil nil 1.00

t+2 ? 24 - 320 310 0.88 nil nil 1.00

t+3 ? 750 - 330 320 0.88 nil nil 1.00

(b)  Comparing case 3 to case 1, µµµµa
3 is the similarity between their absolute values of

ceiling height, µµµµc
3 is the similarity between their continuous values of wind

direction, and µµµµn
3 is the similarity between their nominal types of precipitation.

Figure 35.  Similarity measurement between a present case (1) and two past cases (2

and 3).  The fuzzy operations µa, µc, and µn are described in Section 3.2 (pg. 78).
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phenomena, such as wind and precipitation, more effectively than they forecast small-scale

phenomena, such as cloud ceilings at a particular airport.



133

ceiling wind dirn. pcpn.

t µa
2 µf

(t) max
a
2 µc

2 µf
(t) max

c
2 µn

2 µf
(t) max

n
2

-3 0.75 0.60 0.75 0.88 0.60 0.88 0.75 0.6 0.75

-2 0.80 0.40 0.80 0.88 0.40 0.88 1.00 0.4 1.00

-1 0.71 0.20 0.71 0.88 0.20 0.88 1.00 0.2 1.00

-0 0.70 0.00 0.70 0.88 0.00 0.88 1.00 0.0 1.00

1 0.88 0.00 0.88 1.00 0.0 1.00

2 0.88 0.00 0.88 1.00 0.0 1.00

3 0.88 0.00 0.88 1.00 0.0 1.00

min = 0.70 min = 0.88 min = 0.75

min { max
a
2, max

c
2, max

n
2 } = min { 0.70, 0.88, 0.75 } = 0.70

(a)  For case 2, the “min of the maxes” equals 0.70, due to a dissimilarity between cloud ceilings

at time t-0.  Assign to case 2 this value of similarity to case 1.

ceiling wind dirn. pcpn.

t µa
3 µf

(t) max
a
3 µc

3 µf
(t) max

c
3 µn

3 µf
(t) max

n
3

-3 1.00 0.60 1.00 0.38 0.60 0.60 0.50 0.6 0.60

-2 0.75 0.40 0.75 0.50 0.40 0.50 1.00 0.4 1.00

-1 0.80 0.20 0.80 0.88 0.20 0.88 1.00 0.2 1.00

-0 0.71 0.00 0.71 1.00 0.00 1.00 1.00 0.0 1.00

1 0.88 0.00 0.88 1.00 0.0 1.00

2 0.88 0.00 0.88 1.00 0.0 1.00

3 0.88 0.00 0.88 1.00 0.0 1.00

min = 0.71 min = 0.50 min = 0.60

min { max
a
3, max

c
3, max

n
3 } = min { 0.71, 0.50, 0.60 } = 0.50

(b)  For case 3, the “min of the maxes” equals 0.50, due to a dissimilarity between their wind

directions at time t-2.  Assign to case 3 this value of similarity to case 1.

Figure 36.  Raise old low values of similarity—in effect, “forget” old dissimilarities with µf(t).

Then determine the minimum of the maximum of all the similarities between past case and

present case.  The fuzzy operation µf is described in  Section 3.2 (pg. 78).
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The just described process of similarity measurement of temporal cases is the most

complicated process in the fuzzy k-nn algorithm for prediction.  The subsequent two process are

relatively simple and explained briefly as follows.

Figure 36 shows that between case 2 and case 1 the degree of similarity equals 0.70, and

between case 3 and case 1 the degree of similarity equals 0.50.  Hence, a prediction for case 1

should consist of such proportional parts of case 2 and case 3, as shown in Figure 37.

Traverse case base

Traverse the case base measuring the similarity between past cases and a present case

and simultaneously maintain a linked list of the k most similar cases (such as is shown in Figure

18 on pg. 88).  Make every case-to-case similarity measuring process only as detailed as

necessary.  If initial attribute-to-attribute tests imply strong dissimilarity between cases—

sufficient to exclude the past case in question form the k-nn set—then terminate the similarity

measurement process for that past case and proceed to the next past case.

Make predictions based on a weighted median of the k-nn

For purposes of illustration, we assume that we sought only two analogs for the present

case, that is, k = 2.  The weighted median calculation easily extends to higher values of k.

time case 2 case 3 prediction (actual)

t+1 (0.7 *  24 + 0.5 *  21) / (.7+.5) = 23 (30)

t+2 (0.7 *  30 + 0.5 *  24) / (.7+.5) = 28 (24)

t+3 (0.7 * 999 + 0.5 * 750) / (.7+.5) = 895 (999)

Figure 37.  Prediction based on weighted median of k-nn (k = 2).


