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Summary of Supplementary Information

Supplementary Methods 1. Derivation of likelihood functian for flights in
2004. This derivation takes into account the sampling protocothef loggers

used in 2004.

Supplementary Methods 2. Derivation of likelihood functian for flights in
1992. This differs from Supplementary Methods 1 because of tHerdifiit sam-
pling protocol of the loggers. Both likelihood functionsaapplicable to other

data sets that are collected with similar protocols.

Supplementary Methods 3. Calculations of the expected nunds of misclas-

sified flight durations for 1992 data. This shows the importance of considering
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the sampling protocol. For example, we would expect 143t#ighthe range 1-2

h, but 78 of these would not be directly detected by the logger

Supplementary Methods 4. Likelihood function for a power lav over a bounded
range for prebinned data. This extends the methodology of Box 1 to allow anal-
ysis of data that are only available already prebinned, teeideer and bumblebee

data. Both bounded and unbounded power laws are considered.

Supplementary Methods 5. Likelihood function for an exponatial distribu-
tion over a bounded range for prebinned data.As for Supplementary Methods

4, but for the exponential distribution.

Supplementary Methods 6. Analysis of deer dataFull details of the analysis

of the deer data.

Supplementary Methods 7. Analysis of bumblebee dataFull details of the
analysis of the bumblebee deer data, including, sengitwithe cut-off point §)

of the tail of the bounded distributions.

Supplementary Table 1. Sensitivity tob for bumblebee data in high-food sce-

nario. Statistical analyses for different valuesbof
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Supplementary Table 2. Sensitivity tob for bumblebee data in low-food sce-
nario. Statistical analyses for different valuesipfshowing for the unbounded
range { — oo) the exponential is definitively better supported than tbevgr

law.

Supplementary Figure 1. Original log-log histogram of 1992vandering alba-
tross flight durations (Fig. 3a of ref. 7) computed here from he original raw

data. This is the original figure that then gets corrected in Fay. 3

Supplementary Figure 2. The 2004 data as a log-log histograth BN method).
This shows the 2004 data in LBN form for comparison with Sepmntary Fig. 1

for the 1992 data.

Supplementary Figure 3. Rank/frequency plot for individual birds 1-9 from
2004. The data for each individual bird do not appear to be condistéh com-
ing from individual exponential distributions, suggesgtiihat the pooled gamma

distribution (2) does not arise as a mixture of exponentials

Supplementary Figure 4. Rank/frequency plot for individual birds 10-18

from 2004. Continues Supplementary Fig. 3.
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Supplementary Figure 5. Rank/frequency plot for individual birds 19-20

from 2004. Continues Supplementary Figs. 3 and 4.

Supplementary Figure 6. The 1992 data as in Fig. 3a, but unbimed and on
linear axes. The raw data from 1992 as standard linear histograms, talglea

show how adjusting the first and last dry sequences remoedsrtlyest ones.

Supplementary Methods 1. Derivation of likelihood functian for flights in

2004

For the 2004 data, the wet/dry status of each of 20 birds veasded every 10 s by
the salt-water loggers. Locations were recorded by GPRédsgyat a resolution of
approximately 1 h. The GPS data were used to calculate whamnb@a departed
the colony. These departure times were used to determingubenitial flight
durations, eliminating the long initial series of dry reagh that do not represent
flights (e.g. Fig. 2 for the 1992 data set). Such dry readirayaraence when
the logger is switched on at a computer, and include the takert to attach the

logger to a bird, and the time that the bird spends on the médstdfinally flying.
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Durations of final flights for each trip were also calculate@isimilar manner.

The data set for each bird therefore consists of a wet/ddimgaevery 10 s.
We thus have discrete data from which we want to infer theinoots probabil-
ity density function (pdf) of flight durations. Here we demela multinomial®
likelihood approach to this, that takes into account the tlaat the (continuous)
true flight durations have been recorded in a discrete marirtes is more im-
portant for the shorter flights than the longer ones of, sdy, We then take a
similar approach to derive the likelihood function for tH#92 data set, for which
all recorded flights are- 1 h and ignoring the sampling protocol does profoundly

impact the results.

An example sequence of wet/dry readings is wet-dry-dryeigwet, each
10 s apart — the bird was on the water and then undertook a filghit before
landing. We define a record to be the number of consecutiveahgings in-
between two wet readings; thus the example gives a record dafhds record
corresponds to a true flight duration that may be anywherbamange 30-50 s.
If the bird took off just before the first dry reading, and tHanded just after the
final dry reading then the flight lasted just over 30 s. Whea¢#ise other extreme,

if the bird took off just after the first wet reading and landest before the final
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wet reading then the flight lasted just under 50 s.

We consider 30 s to be the minimum dry time that representseaflight
between food sources. Shorter dry times may simply be ailftirthlits leg out of
the water to scratch, or could correspond to an abandone@fakr hus we ignore
records of 1, 2 and 3, as these would include such short flights conclusions

would be unaffected by using, say, 60 s instead of 30 s as thieum.

Following ref. 7, the data for all birds were pooled. The t#sg data set
consists of a set of records (separate flights) {r;}, withi = 1,23, ..., 1416,
and eachr; being an integer. The full data set is shown in the rank/feagy plot
in Fig. 1 of the main paper, where for simplicity a record @ly,s6 is plotted as
a flight of durationt = 60 s (even though this record may represent a true flight
of duration 50-70s — but this is clearly only an issue for teepshortest flights).
Note that there can be multiple flights that have the sameewafity and so these
give multiple circles with consecutive ranks on the ordenaitFig. 1. Because the
fitted distribution, to be calculated shortly, reaches 30@esalso show records of 3
in Fig. 1, even though, as just discussed, these were noidedlin the statistical
analysis. The rank/frequency plot is clearly not a stralgi®, indicating that the

data are not power-law distributed. We now develop thesdiedil analysis to test
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whether the data are consistent with coming from a shiftednga distribution.

Define the pdf of flight durations (which is what we want to detee) as
f(x;0), wherez is the random variable representing a flight duration (irsilo
is a vector of parameters. We will find the maximum likelihastimates (MLES)

for the parameters, by maximizing the log-likelihood fuiant®°/(4|r) defined

by
16]r) = Tog[L(0]r) (11)
= log[P(r|0)] 12)
— log [1_1 P(r,-|9>] (13)
= 3 log PUrlo)], (1)

where L(0|r) is the likelihood function fo® given the datar, n = 1416 is the
total number of flights and(P;|0) is the probability of obtaining a record when

the parameters in the pdf are giventy

Clearly, some values of will be repeated. So we defirg to be the number
of records that equal wherej = 1,2, 3, ..., J, andJ = max;(r;) is the maximum
record. Note thaE;’:1 d; = n. Since only records of 4 and above are considered,

we havwl =dy=d3=0.
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So the multinomial log-likelihood functichis

J
[(f]r) = X_: d;log [P(5]6)] (15)

For a single flight, ifR is the random variable representing the value of the

record, then
P(R = j|0) = / " P(R = j|flight duration isz) f (z; 0)dx, (16)
0

for integer values of = 1,2,3, ..., J. Next, define the random variabléto be
the time from a bird taking off from the water to the time of thext dry reading
by the salt-water logger. Then, for each flightis uniformly distributed on the

interval [0, 10) seconds, such that its pdf is

=, u€0,10)

gu(u) = (17)
0, otherwise.

Then to obtain a recorf] thexz—U interval that commences at the first dry reading
must last long enough to get a furthier 1 dry readings, but not last long enough

to getj more. Thus

P(R = jlflight durationisz) = P(10(7 —1) <z —U < 10j) (18)
= P10(j—1)—2z<-U <105 —x) (19)

= P(z—10j <U <2 -10(j - 1)) (20)
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2—10(j—1)
= / gu (u)du, (21)

-10§

where the final line comes from the known pdfl(of

The two limits of the integral are 10 s apart, and so givehere are two

cases:

i) The top limit of the integral is irj0, 10) and therefore the bottom limit is not,

i.e.x —10(7 — 1) € [0,10), such that: € [10(j — 1), 107). Then, from (17),

z—10(j—1) z—10(j-1) 1
/ gu(u)du = / —du (22)
z—107 0 10
x—10(7 — 1)
= v T/ 23
h (23)

ii) The bottom limit of the integral is if0, 10) and therefore the top limit is not,

i.e.x — 105 € [0, 10), such that: € [104,10(j + 1)). Then, from (17),

z—10(j—1) 0 1
/ gu(u)du = / —du (24)
z—10j z—105 10
10 — 2 4+ 10y
e 2
10 (25)

These two cases simplify to
I+5—J, € [10(5 — 1), 105)
P(R = jl|flight durationisz) = ¢ 1 — 24, &€ [104,10(j + 1)) (26)

0, otherwise.
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So, say that a bird flies for seconds, withe € [60,70). Then RR = 7|z) =
1+ /10 — 7, from settingj = 7in (26), and PR = 6|z) = 1 — 2/10 + 6, from
setting; = 6 in (26). As required, these two probabilities sum to 1 and theio

records are possible for this flight.

Now, (16) becomes

10(j+1) (

PR =jl) = /110j <1+£—j)f(x;9)dx+ 1—£+j)f(93;9)d56

0(j—1) 10 105 10
(27)
10(j+1) 105 X
= :0)dr — ('— —) :0)d
/10(j—1) f(w;6)de /10(]'—1) J 10 f(w;0)de
10G+1) / ¢
- (5 ) Haso)dr. (28)
105 10

The first term in (28) represents all flights in the rangéj — 1) to 10(j + 1), and
the second and third terms then reduce this to account faaimpling protocol.

A formulation that is useful numerically is

10(j+1)

PR=l0) = (-5) [ fwoder(+9) [ faso)dr

0(j-1) 105

+ : [/Iloj xf(z;0)dx — /IO(jH) zf(x; H)dx] . (29)

10 0(j—1) 104

Since flights of less than 30 s are not considered to be patieofdod-

searching mechanism that we are modelling, we h&wed) = 0 for z < 30.
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Therefore,

P(R=1l§) = 0,
P(R=2l§) = 0,

40 1 40
P(R = 3|0) — 4/30 fla:0)de — 7 | “af(;0)dr. (30)

Now, we have records at = 3 in the data, but some of these will represent dry
times in the range 20-40 s. In the model, and thus (30), we tadkes f (z; 0) = 0

for x < 30 s (see Methods). Since we exclude records of 3 from the datahé
probability of getting such a record is non-zero), to makerémaining PR =
j|0) sum to 1 in the multinomial log-likelihood function we neexddivide each
probability byl — P(R = 3|¢). For the log-likelihood function, this translates
to inserting the definitions (& = j|0) from (28) into (15), and then subtracting

nlog(l — P(R = 3|0)) from the log-likelihood function.

The multinomial log-likelihood function (15) then becomes

J 10(j+1) 105 . T .
I(6r) — j;djlog{/l | f(gc;e)olx—/1 (j—ﬁ> f(:0)de

0(j—1 0(j—1)

10(j+1) ( X

— —j) f(x; G)dx} —nlog(l — P(R = 3|0)).

104 10

(31)

This is the function to be maximized with respect to the paatams ind. It is valid
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for any pdf f(x; @) for flight durations longer than 30 s.

For a gamma distribution of flight durations (in seconds),haee two pa-
rameters, the shape, and the rate; (with units s'!); thus,f = (7, s). The pdf
is
(z —30)*"le™@=30) 2 > 30

flaz0)={ T'(s) (32)
0, = <30.

In the main text we discuss flight duratioh# h, given byt = 3600z, and so

report the rate in units ™!, given byr = 7/3600.

We numerically found the values 6ainds that maximize the log-likelihood.
To test for goodness-of-fit we used the G-test (likelihoatiertest) with Williams'’s
correctiort®. The 95% Cls were obtained by the profile likelihood-ratist'fe
The statisticR’ = 2(I, — Iy;.z) has a chi-square distribution with 1 df, where
Zp is the negative log likelihood of the data given parametduesa (i.e. shape
or rate), and ;.5 is the negative log likelihood of the data at the MLE valies
The 95% confidence interval for shape, for example, is theangby values of
shape for whichR' < X2 o511, wherel, is minimized (with respect to rate) for
each value of shape. All computations were performed usingeRsion 2.2.0

(Www. r - pr oj ect . or g).
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Supplementary Methods 2. Derivation of likelihood functian for flights in

1992

First, in Supplementary Fig. 6 we show the raw 1992 loggea,da¢fore and
after adjustments of the first and last dry sequences. Thesgh@same data as
in Fig. 3a, but plotted on linear axes and not binned. Plgtthis way clearly
identifies the individual long sequences that get removedérid. 3c we show the

same data as a rank-frequency plot, as in Fig. 1 for the 20@4 da

The 1992 data were obtained from salt-water loggers, bugahepling pro-
tocol was different to that for the 2004 data. In 1992, theicks/took a wet/dry
reading every 3 s. For every 15 s interval, a bird was consitier be on the water
if the logger was wet for 9 s or more. Due to data storage limoits, the logger
only saved the total number of 15 s intervals in each hour tuckvthe bird was
considered wet. Thus the time series for each bird consaft@dnumber from
0 to 240 every hour (e.g. Fig. 1 of ref. 7). Thus, flights shott@an 1 h could
not be directly inferred from the data, because a wet couOoffor example,
could imply one flight of 45 minutes ( [240-60]/240 of an hqum) several shorter
flights interspersed by landings. So in ref. 7, consecutouglly wet counts of O,

in between non-zero hours, were used to give flight timek 2f3, ... hours. A
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sequence of hours that goes wet-dry-wet was then assumeditéight of 1 h.

However, such a 1 h record of dry readings could come from e ftigiht
anywhere in the range 1-3 h. For example, consider the situatere the hourly
counts started at 10:00, 11:00, 12:00 and 13:00, and a lwkddff at 10:15 for
a 2.5 h flight, landing again at 12:45. Then only the 11:0@Q2ourly record
would be completely dry, and so in ref. 7 this 2.5 h flight wohl/e been con-
sidered to be a 1 h flight. Similarly, some flights of duratieg & will not give a
completely dry hour, and so will not get recorded at all indlaga. Here we mod-
ify the approach developed above for the 2004 data to takedfadhese factors
into account, and obtain the relevant likelihood functionrifer the distribution

of actual flight durations.

We define the pdf of true flight durations a&; 6), wheret is the random
variable representing a flight duration (in hours), @id again a vector of pa-
rameters. The data set is the set of records: {v;}, i = 1,2,3,..., N, with
each record; being a number of consecutive dry hours recorded between two
wet hours, andV = 335 is the number of flight records (pooled for all birds) in

the data set.
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Analogous to (15), we want to determine and maximize the inartial

log-likelihood function/(#|v) given by

1(Ov) = Zc] log [P(5]0)], (33)

wherec; is the number (count) of records that equal/, = max;(v;) is the
maximum record, and(R|0) is the probability of obtaining a recordwhen the

parameters are.

For a single flight, ifl” is the random variable representing the value of the

record, then
P(V = v]§) = / " P(V = ulflight duration ist)g(; 8)d. (34)
0

We will later substitute this into (33), replacingoy ;.

Considering only flights> 1 h, we define the random variahllg to be the
time (in h) between a bird taking off and the start of the nexrty block of 240
measurements. Thel, is uniformly distributed on the intervéd, 1) hours, such

that its pdf is simply

1, up € [0, 1)
gUh(Uh) = (35)
0, otherwise.
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Then, analogous to (18)-(21),

P(V = v|flightdurationist) = Pv <t—U,<v+1) (36)
— Plo—t<—U,<v—t+1) (37)
= Pt—v—-1<U,<t—w) (38)

t—v
= /t_ B gu,, (up,)duy,. (39)
The two limits of the integral are 1 h apart, and so givahere are two

cases.:

i) The top limit of the integral is in0, 1) and therefore the bottom limit is not, i.e.

t—wve[0,1),suchthat € [v,v+ 1). Then

o du, = [ ‘1d 40
/t gUh(uh) Uup = /0 Up, (40)

—v—1

= t—w. (41

i) The bottom limit is in[0, 1) and therefore the top limitis not, i.e.— v — 1 €

[0,1), suchthat € [v+ 1,v + 2). Then

t—v 1
t/‘ gUﬁ(“h)duh = t/‘ 1 duh (42)
t 1 t

—v— —v—1

= 2—t+w. (43)
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These two cases simplify to

t—wv, te€v,v+1)

P(V = vlflight durationist) = ¢ 2 — ¢+ v, tev+1,0+2) (44)

0, otherwise,
for v > 0. So say a bird flies fot hours witht € [5,6). Then RV = 5|t) =t —5,
from settingv = 5 in (44), and RV = 4|t) = 6 — t, from settingv = 4 in (44).

As required, these two probabilities sum to 1 and no othardscare possible.

Forv =0,
1, tel0,1)
P(V = Offlight durationiist) = ¢ 2 —¢ ¢ e [1,2) (45)
0, otherwise,

i.e. all flights< 1 h yield a record of 0, and so do some flights of duration 1-2h.

These latter flights would not be present in the data set.

Now, forv > 0 equation (34) becomes
v+1 v+2
P(V = 0lf) = / (t —v)g(t; 9)dt+/ (2 — t +v)g(t: O)dt.
v v+1
Forv = 0 we insert (45) into (34) to obtain

P(V =0|0) = /01 g(t; 0)dt + /12(2 —t)g(t; 0)dt. (46)
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We do not have records of = 0 in the data. So analogous to the incorpo-
ration of (30) for the 2004 data, but for a different reasam,.f > 0 we need to
divide each PV = v|0) by 1 — P(V = 0/¢). Then the multinomial probabilities
sum to 1 in the likelihood function. Again, we insert the digfims RV = v|0)
from (46) into (33), replacing by j, and subtractV log(1 — P(V = 0|9)) from

the log-likelihood function.

The resulting multinomial log-likelihood function (33)tisen

1(0]v) Z ¢cjlog {/ (t—7)g(t; 0)dt + /31:2(2 —t+7)g(t; Q)dt}

— Nlog(1 —P(V =010)). 47)

This is the function to be maximized to find the MLEs and confmeintervals

for the parameters i, and to be used in goodness-of-fit tests.

To test for the shifted gamma distribution of flight duraspas for the 2004

data, we have

s

r 1\ aert—1/120) 1
3 (t ) e >

gt;0) =4 T 0 (48)

0, t< g
wheret is in hours,s is the shape parameterjs the rate parameter imh, and

1/120 = 30/3600 is the conversion of 30 s into hours.
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Supplementary Methods 3. Calculations of the expected nunds of misclas-

sified flight durations for 1992 data

From the above calculations for the 1992 data, it is cledratrars can arise from
assuming that all flights in the range 1-2 h yielded record.ofurthermore,
flights in the range 2-3 h can yield records of 1. In ref. 7 it waplicitly assumed
that arecord of 1 represented a flight of 1-2 h, and no accoastaken of the data
sampling protocol. The results in Figo 8how that the data-sampling protocol and
binning procedure do need to be properly accounted for terahehe the expected

distribution of flight durations.

Assuming that the pdf (48) with MLE values represents the tligtribution
of flight durations, we now determine the expected numberw# flights that
would have been in the range 1-2 h but were missed complegalyebsampling

protocol (as they would have ended up with a record of 0).

We first calculateV,, the expected total number of flights (including those
that did not get recorded) that would have been requiredaiol yhe 335 records.
Thus N, consists of the 335 recorded flights (that by definition wékre>al h),

plus the flights of 1-2 h that did not get recorded, plus théafg: 1 h (that were
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not recorded).

The 335 records are those0, thus
[1—P(V =0|0)]N; = 335, (49)

wherel — P(V = 0]d) is the probability of getting a recorg 0, given that the

parameters take the MLE valués= 6. Using the knowrd, we have
P(V = 0]4) = 0.534, (50)

i.e. over half of theV, flights are expected to give a record of 0, and thus will not

explicitly show up in the data (many of them will Be1 h). Then
Ny =719, (51)
of which 335 are expected to give records and thus be detected in the data.

The expected number of 0 records resulting from flights oftlon¢ €

[1,2), which we will call Ey, is given by

Ey = PV =0Jte[1,2)) x Pt € [1,2)) x N (52)
_ /12 P(V = 0lt)g(t: )dt x N, (53)
- /12(2 — 1)g(t: 6)dt x N, (54)
e (55)
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where we have used (45) with= 0 to obtain (54), and rounded to the nearest

integer (and shall continue to do so where appropriate).

The expected total number of flights in the range?) is
2 .
/ g(t; 0)dt x N; = 143. (56)
1

Thus, we expect there to be 143 flights of duration 1-2 h, otwfii8 will not be
directly detected by the data. So simply considering rexofdL to represent all

the 1-2 h flights is incorrect.

Finally, we calculate the expected number of flights of dara-3 h that
will give a record of 1 h (call thig”;). These would have been incorrectly consid-

ered to be flights in the range 1-2 h in ref. 7. Similarly to alhove have

3 ~
B = /ZP(V:1|t)g(t;9)dt><Nf (57)
- /23(3—t)g(t;é)dt><]\7f (58)
_— (59)

where we have used (44) with= 1 to obtain (58). Analogous to (56), we expect
a total of 88 flights in the range 2-3 h. So of these 88 flights xyeeet 47 to yield
arecord of 1, and thus these 47 would have been incorreciyraed in ref. 7 to

represent flights of duration 1-2 h.
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So in summary, in the data there were 102 records of 1, and 22valfiich
would have been considered in ref. 7 to respectively reptdbghts in the ranges
1-2 h and 2-3 h. However, here we have shown that we would éxpere to
be (based on the MLE values) 143 real flights in the range 1€ twhich only
65 would yield a record of 1, the remaining 78 giving a recar® and thus not
be detected by the data. And we would expect 88 true flightsanange 2-3 h,
but that 47 of these would yield a record of 1, and therefoxe lheen incorrectly

considered to be of duration 1-2 h.

Supplementary Methods 4. Likelihood function for a power lav over a bounded

range for prebinned data

The bumblebee and deer data shown in ref. 10 were digitized fristograms
presented in the original papéfg®. Here we develop a likelihood approach to
analyze these data sets. The methods are general and so applieel to any

binned data set.

We want to test whether a power law occurs over a given rangé Thus,

the pdfis

flz)=Cx™", z€la,b], (60)
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whereC is the normalization constant given by= (u—1)/(a'~*—b'"*), which

is obtained by solvian f(x)dx = 1. We are only considering the distribution of
data that lie in the range, b]. This formulation requires explicit specification of
the range over which power-law behaviour is being tested.dommonly stated
that a power law occurs over ‘the tail of the distributiomidea line drawn or fitted

over this range, without qualification as to how the faib] is determined.

Consider the data to be countsin bins indexed by = 1,2, 3, ..., J, defin-

ing J to be the index of the final bin. Let be the bin width (assumed equal for
all bins), such that first bin covers the rang& a + w, and the right-hand side
of the final bin isa + Jw. The maximum value that we consider attainable by the
data,b, thus satisfies > a + Jw. Simply takingb to equala + Jw assumes that
the maximum data point recorded represents the maximunigh@sstainable (to
within w). This is unlikely to occur in practice, particularly for sthdata sets,
and especially in a power-law situation. This is a subtlenpthat has received

little attention.

We define = a+J'w, where integer’ > J. Therefore new bing+1, J+
2,...,J"  have counts of 0, and sty ,; = d;,» = ... = d; = 0. This allows the

possibility that measurements could attain values hidiaar those that happen to
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be sampled in the particular data set being studied.

For a single data value, the probability of being in bigiven the parameter

s
a+jw
P(being in binj|u) = / Oz rde (61)
a+(j—1)w
o C 1—p a+jw
1= M {I L+(j—1)w (62)

— @ = G- D) (63)

_ (CL + (] - 1>w)1_ﬂ - (CL _|_jw)1_ﬂ (64)

al=r — pl-n

substituting” to obtain (64). Note th@f:l P(being in binj|u) = 1, as required.

The log likelihood function, analogous to (15), is

[(u|datg = idjlog[P(being in binj|u)] (65)

J
= —n log(al_u — bl_u) —+ Z d] log {(a + (] — 1)@[1)1_” — (CL + jw)l_ﬂ:| 5
j=1

(66)
which can be used to find MLEs and confidence intervals. Thersation is taken
to J instead ofJ’' becausel;,, = d;.» = ... = d; = 0. Therefore, an increase
in b does not change the summation term in (66), but only chammgefrst term;

the first term is related to the normalization constantThe likelihood function
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for the idealized infinite power-law tail can be derived gsihe same approach,

and the resulting function is equivalent to taking the lilnit> oo in (66).

Supplementary Methods 5. Likelihood function for an exponatial distribu-

tion over a bounded range for prebinned data

The pdf for an exponential distribution over the rangé| is
fz) =A™, z € a,b], (67)

whereA is the normalization constant given ly= )\ /(e~** — e~**), as obtained

by solving [° f(z)dz = 1.

For a single data value, the probability of being in bigiven the parameter

NS
a+jw
P(being in binj|\) — / A Ndy (68)
a+(j—1)w
A — \x atjw
- _X {e ]a+(j—1)w (69)
A . .
_ _X [e—)\(a+1w) . e—)\(a—k(j—l)w)} (70)
Ae-Ma+iw)
_ _ W)
= S [1-e™)] (71)
e—)\(a—i-jw) [e)\w o 1}
- e X _g X (72)
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The log likelihood function is then

J
[(Mdata = > d;log[P(being in binj|\)] (73)
j=1
e —1 A
= nlog (W) — \na — )\w; d;j. (74)

The likelihood function for the idealized infinite tail (sesting a standard ex-
ponential distribution that has been shiftedd)ycan be derived using the same
approach. The resulting function is equivalent to takingltimit b — oo in (74),

and can be solved analytically to obtain the MLEXof

Supplementary Methods 6. Analysis of deer data

Figures 3c and 3d of ref. 10 show log-log histograms of farggimes of deer, for
unfenced and fenced scenarios. The data were digitizedrbr7. In ref. 10 the
foraging times were assumed to represent time intervalgdmet the deer finding
food. However, the times actually represent time spentgrgpand processing
food at a particular foraging site (pages 608 and 610 in i®f.iZ. handling times,
rather than time spent moving between stations. Nevedbel® re-analyzed
the data in order to test the methods commonly used to dematmétévy flight

behaviour.
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We digitized the original histograms from ref. 27 to obtdie tlata. In the
log-log histograms in ref. 10 (our Fig. 4) these same valuesewplotted on a
log-log scale, with no lumping of the original bins. Thus thg-log histograms
show bins that are of equal width on a linear scale (namelydahvwaf 20 s, as in
the original histograms in ref. 27). However, for the oramimwandering albatross
study, the log-log histograms had bins that progressively dalilsievidth. And
for the wandering albatross plot, the geometric means (onidg on a log scale)
of bins were plotted on the abscissa, whereas for the deeritoints on a linear

scale were used. Our likelihood approach avoids these ftsaurces of error.

For both scenarios, the final bin of the original data was segignomitted
in ref. 10. We do likewise, so that we perform our statistgtaldies on the same
data as used in ref. 10. Also, the lumping of bins means timstdfi zero count in
the original data do not show up in any way on the log-log lgsams (but they

do get considered in our likelihood approach).

In Figures 3c and 3d of ref. 10 (our Fig. 4), the straight lingsresenting
power laws were drawn across all points excluding the firsttfoe. the tails were
considered to be the second points onwards). Thus, for tiges, b] needed for

our likelihood analyses, we use the outside endpoints aktihéns. Specifically,

www.nature.com/nature 27



doi: 10.1038/nature06199 SUPPLEMENTARY INFORMATION

for the unfenced scenario we hajweb] = [20, 180], and for the fenced scenario

[a, b] = [20, 120].

The Lévy flight hypothesis, as conventionally stated,tesldo power-law
tails with no mention of an upper limit (i.eh — oc). We tested both data sets
under the assumption of no upper limit, and both sets gave 0—* for the power
law, and Akaike weights: 108 for the power law compared to the exponential.
Thus, a true Lévy flight with an infinite tail is completelycionsistent with the

data.

Supplementary Methods 7. Analysis of bumblebee data

Figure 3a of ref. 10 shows two linear histograms of inter-8odistances flown
by bumblebees. The data were digitized from ref. 28. Oneogiain is for a
high-food scenario and the other is for a low-food scendnd-ig. 3b of ref. 10
these data sets were plotted on a log-log histogram, ansl déihglopeu ~ 2 and

i =~ 3.5 were shown to indicate power-law behaviour in the tails.

To obtain the data for our analyses, we digitized the origimstograms

from ref. 28 as well as the reproduced linear histograms freim 10, so that
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we could minimize any discrepancies due to digitizationn§ider the low-food
case, namely the second diagrams in Fig. 3a of ref. 10 andtkifref. 28. The
original bin width isw = 37.5, and the values plotted are percentages of the total
352 flights. To obtain the counts we utilized this latter faetause each count
must be a multiple of 100/352. (The units of distance weremym the original
Fig. 4 of ref. 28 as cm, but should actually be mm, as in Figliraisd 2 of ref. 28;

B. Heinrich, pers. comm. This does not affect our conclusionthose of ref. 10).
The final bin in the tail of the original ref. 28 plot was omdta the ref. 10 plot.

We do likewise as our interest is in comparing methods foluatang power laws,

and so wish to be consistent with the data used in ref. 10.

For the log-log histograms in ref. 10, the data were smootisét running
averaging and then lump¥d(but not in the manner described for the albatross
data in ref. 7). We note that a linear regression fit to the rséwghest lumped
bins for the low-food scenario gives a slope.of= 2.33, larger than the value of
2 shown in Fig. 3b of ref. 10. The likelihood approach preséttere avoids any
issues concerning the lumping of bins, and uses the origgmatiata as binned in

ref. 28.

For both food scenarios we need a rangdab| over which to test the
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power-law and exponential models. We used the ranges ichpliethe straight
lines drawn in Fig. 3b of ref. 10. For both scenarios we take 150, which

is the only value that is consistent with being both a breaktpaf the original
bins of ref. 28, and with lying between the third and fourtmped bins in Fig. 3b
of ref. 10 (which is where the power-law lines are drawn to)r fhe high-food
scenario we také = 412.5 (the endpoint of the corresponding line on Fig. 3b
of ref. 10), and for the low-food scenario we take-= 937.5, which is the right
endpoint of the range of data included in the final lumped biRig. 3b of ref. 10.
These values, as used in the main text, assume that the hilgttesecorded is the
highest data possible, and are the most favourable for tiwemaw compared to

the exponential.

In Supplementary Table 1, for the high-food scenario, wenstie effect
of increasingb above the default value of 412.5, to allow for the (very hRel
possibility that the true value df will be larger than that based on the largest
observed data. This possibility is particularly likely toooir for power laws. We
also test the models under the idealized Lévy flight assiomotf an infinite tail
(i.e.b — o0). Supplementary Table 1 demonstrates that the computed\\MILEe

for u is sensitive ta, and that neither model is strongly favoured for any value of
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b, even for the idealized infinite situation.

In Supplementary Table 2 we test the sensitivity for the low-food sce-
nario. Extending to just one or two bins beyond the default shows that the mild
support in favour of the power law (as given by the Akaike vy is not robust
to the value ob. For the idealized assumption of an infinite tail, the expuia
distribution is overwhelmingly favoured. In reality, thieue’ value ofb in any
situation will lie somewhere between these extremes. Bsgeneral issue that

requires further attention.

31. Lawless, J. FSatistical Models and Methods for Lifetime Data (2nd ed.,

Wiley series in Probability and Statistics, Wiley, New &52003).

www.nature.com/nature 31



doi: 10.1038/nature06199 SUPPLEMENTARY INFORMATION

Supplementary Table 1. Sensitivity to b for high-food bees data

Final bin b MLE for u MLE for A Akaike weights
(95% CI) (95% CI) Power law Exponential
G,p G,p
11 412.5 3.68 0.0153 0.59 0.41
(2.14, 5.42) (0.0086, 0.0234)
0.16, 0.69 0.59, 0.44
12 450 3.85 0.0159 0.55 0.45
(2.38,5.55) (0.0094, 0.0237)
0.10, 0.75 0.50, 0.48
13 487.5 3.97 0.0162 0.52 0.48
(2.54, 5.63) (0.0099, 0.0239)
0.075, 0.78 0.46, 0.50
25 937.5 4.29 0.0166 0.41 0.59
(3.06, 5.84) (0.0108, 0.0241)
0.063, 0.80 0.41, 0.52
none 00 4.34 0.0166 0.40 0.60
(3.18,5.87) (0.0108, 0.0241)
0.076, 0.78 0.41, 0.52
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Supplementary Table 1. Sensitivity tob for bumblebee data in high-food sce-
nario. Final bin values represent the index of the right-most aagbir?® that

is included;b is then the right endpoint of this bin. A final bin of 11 was used
in the main text, and the value of 25 is also used here as tlheidefault for
the low-food scenario (so it could be argued that here we bawmats of O in bins
12 to 25). Setting — oo represents the idealized Lévy flight assumption of no
maximum value. The MLE foy is sensitive tah. For all goodness-of-fit tests,
n = 25 and df=1. The small sample size and rapid decay of the disiwilns mean

that for all the values df, neither model conclusively has the most support.
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Supplementary Table 2.

Sensitivity to b for

SUPPLEMENTARY INFORMATION

low-food bees data

Final bin b MLE for MLE for A Akaike weights
(95% CI) (95% CI) Power law Exponential
G,p G,p
25 937.5 2.20 0.00609 0.78 0.22
(1.84, 2.60) (0.00497, 0.00732)
11.3, 0.19 13.1, 0.11
26 975 2.23 0.00614 0.68 0.32
(1.88,2.61) (0.00503, 0.00736)
11.2,0.19 12.8, 0.12
27 1012.5 2.26 0.00618 0.58 0.42
(1.91, 2.63) (0.00508, 0.00739)
11.2,0.19 12.5, 0.13
none 00 2.66 0.00635 0.001 0.999

(2.39,2.96) (0.00531, 0.00751)

14.3, 0.07 11.7,0.16
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Supplementary Table 2. Sensitivity tob for bumblebee data in low-food sce-
nario. A final bin of 25 was used in Table 1, but adding just one or twivaex
bins of zero count (bins 26 and 27) shows that the weightsearsitsre tob, and
that no model is conclusively preferred. Allowing an infeniail overwhelmingly

favours the exponential. For all goodness-of-fit tests, 129 and df= 8.
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Supplementary Figure 1. Original log-log histogram of 1992vandering alba-

tross flight durations (Fig. 3a of ref. 7) computed here from he original raw

data. Breakpoints of binsare at 1, 2, 4, 8, 16, 32, 64 and 128 h (witlnbervals

1 <t<?2 2<t<4,etc.), and results are plotted at the geometric means. The
frequencies are each normalized by their respective bithwit yield frequency
densities that compensate for the increasing bin wihsrmed logarithmic bin-
ning with normalization, LBN, in ref. 24). The straight linedicates a power law

of exponent, = 2 (ref. 7). This is the original figure that then gets correated

Fig. 3a.
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Supplementary Figure 2. The 2004 data as log-log histogranh BN method).
Red curve is the MLE fitted gamma distribution (2), shown ininmaxt to be

a good fit p = 0.83). The lowest bin contains just the records of 30 s, which
were not used in the likelihood maximization (because thdyimclude some
true dry durations of 20-30 s, which are not considered #ight outlined in
Supplementary Methods 1). The large values of scaled frexyueccur because
the counts are scaled by the bin widths, which are small (urd)dor the shorter

flights.
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Supplementary Figure 3. Rank/frequency plot for individual birds 1-9 from
2004.Red curves are number of flights predicted from the MLE gamisizilou-
tion (2) as fitted to the pooled data (ié% as in Fig. 1), sctddtie total number of
flights for each bird. Blue curves are the MLE exponentiahiitividually to each
bird. The individual data sets seem more consistent withiegrinom the pooled

gamma distribution than from individual exponential diaitions, suggesting

www.nature.com/nbi@b the pooled gamma distribution does not arise as a neixtiuexponentials.
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from 2004. As Supplementary Figure 3, for the next 9 birds.
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Supplementary Figure 4. Rank/frequency plot for individual birds 10-18
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Supplementary Figure 5. Rank/frequency plot for individual birds 19-20

from 2004. As Supplementary Figures 3 and 4, for the remaining 2 birds.
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Supplementary Figure 6. The 1992 data as in Fig. 3a, but unbimed and on
linear axes. aRaw logger data before adjusting for time spent on Bird Idlan
Values were binned to obtain the blue circles in Fig. 3a. &eegy axis is trun-
cated at 10 to clearly show the individual counts in the ththe histogram, and
a 15 h dry sequence, for example, is counted in the 15-16 b a, but after
adjusting the first and last dry sequences. Values were ditmebtain the red

circles in Fig. 3a. It is clear that the adjustment of first et dry sequences

removes the longest ones.
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