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Summary of Supplementary Information

Supplementary Methods 1. Derivation of likelihood function for flights in

2004. This derivation takes into account the sampling protocol ofthe loggers

used in 2004.

Supplementary Methods 2. Derivation of likelihood function for flights in

1992. This differs from Supplementary Methods 1 because of the different sam-

pling protocol of the loggers. Both likelihood functions are applicable to other

data sets that are collected with similar protocols.

Supplementary Methods 3. Calculations of the expected number of misclas-

sified flight durations for 1992 data. This shows the importance of considering
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the sampling protocol. For example, we would expect 143 flights in the range 1-2

h, but 78 of these would not be directly detected by the loggers.

Supplementary Methods 4. Likelihood function for a power law over a bounded

range for prebinned data. This extends the methodology of Box 1 to allow anal-

ysis of data that are only available already prebinned, as inthe deer and bumblebee

data. Both bounded and unbounded power laws are considered.

Supplementary Methods 5. Likelihood function for an exponential distribu-

tion over a bounded range for prebinned data.As for Supplementary Methods

4, but for the exponential distribution.

Supplementary Methods 6. Analysis of deer data.Full details of the analysis

of the deer data.

Supplementary Methods 7. Analysis of bumblebee data.Full details of the

analysis of the bumblebee deer data, including, sensitivity to the cut-off point (b)

of the tail of the bounded distributions.

Supplementary Table 1. Sensitivity tob for bumblebee data in high-food sce-

nario. Statistical analyses for different values ofb.
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Supplementary Table 2. Sensitivity tob for bumblebee data in low-food sce-

nario. Statistical analyses for different values ofb, showing for the unbounded

range (b → ∞) the exponential is definitively better supported than the power

law.

Supplementary Figure 1. Original log-log histogram of 1992wandering alba-

tross flight durations (Fig. 3a of ref. 7) computed here from the original raw

data. This is the original figure that then gets corrected in Fig. 3a.

Supplementary Figure 2. The 2004 data as a log-log histogram(LBN method).

This shows the 2004 data in LBN form for comparison with Supplementary Fig. 1

for the 1992 data.

Supplementary Figure 3. Rank/frequency plot for individual birds 1-9 from

2004.The data for each individual bird do not appear to be consistent with com-

ing from individual exponential distributions, suggesting that the pooled gamma

distribution (2) does not arise as a mixture of exponentials.

Supplementary Figure 4. Rank/frequency plot for individual birds 10-18

from 2004. Continues Supplementary Fig. 3.
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Supplementary Figure 5. Rank/frequency plot for individual birds 19-20

from 2004. Continues Supplementary Figs. 3 and 4.

Supplementary Figure 6. The 1992 data as in Fig. 3a, but unbinned and on

linear axes. The raw data from 1992 as standard linear histograms, to clearly

show how adjusting the first and last dry sequences removes the longest ones.

Supplementary Methods 1. Derivation of likelihood function for flights in

2004

For the 2004 data, the wet/dry status of each of 20 birds was recorded every 10 s by

the salt-water loggers. Locations were recorded by GPS devices, at a resolution of

approximately 1 h. The GPS data were used to calculate when each bird departed

the colony. These departure times were used to determine thetrue initial flight

durations, eliminating the long initial series of dry readings that do not represent

flights (e.g. Fig. 2 for the 1992 data set). Such dry readings commence when

the logger is switched on at a computer, and include the time taken to attach the

logger to a bird, and the time that the bird spends on the nest before finally flying.
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Durations of final flights for each trip were also calculated in a similar manner.

The data set for each bird therefore consists of a wet/dry reading every 10 s.

We thus have discrete data from which we want to infer the continuous probabil-

ity density function (pdf) of flight durations. Here we develop a multinomial31

likelihood approach to this, that takes into account the fact that the (continuous)

true flight durations have been recorded in a discrete manner. This is more im-

portant for the shorter flights than the longer ones of, say, 1h. We then take a

similar approach to derive the likelihood function for the 1992 data set, for which

all recorded flights are≥ 1 h and ignoring the sampling protocol does profoundly

impact the results.

An example sequence of wet/dry readings is wet-dry-dry-dry-dry-wet, each

10 s apart – the bird was on the water and then undertook a shortflight before

landing. We define a record to be the number of consecutive dryreadings in-

between two wet readings; thus the example gives a record of 4. This record

corresponds to a true flight duration that may be anywhere in the range 30-50 s.

If the bird took off just before the first dry reading, and thenlanded just after the

final dry reading then the flight lasted just over 30 s. Whereasat the other extreme,

if the bird took off just after the first wet reading and landedjust before the final
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wet reading then the flight lasted just under 50 s.

We consider 30 s to be the minimum dry time that represents a true flight

between food sources. Shorter dry times may simply be a bird lifting its leg out of

the water to scratch, or could correspond to an abandoned take off. Thus we ignore

records of 1, 2 and 3, as these would include such short flights. Our conclusions

would be unaffected by using, say, 60 s instead of 30 s as the minimum.

Following ref. 7, the data for all birds were pooled. The resulting data set

consists of a set of records (separate flights)r = {ri}, with i = 1, 2, 3, ..., 1416,

and eachri being an integer. The full data set is shown in the rank/frequency plot

in Fig. 1 of the main paper, where for simplicity a record of, say, 6 is plotted as

a flight of durationt = 60 s (even though this record may represent a true flight

of duration 50-70s – but this is clearly only an issue for the very shortest flights).

Note that there can be multiple flights that have the same value of t, and so these

give multiple circles with consecutive ranks on the ordinate of Fig. 1. Because the

fitted distribution, to be calculated shortly, reaches 30 s,we also show records of 3

in Fig. 1, even though, as just discussed, these were not included in the statistical

analysis. The rank/frequency plot is clearly not a straightline, indicating that the

data are not power-law distributed. We now develop the statistical analysis to test

doi: 10.1038/nature06199    SUPPLEMENTARY INFORMATION

www.nature.com/nature 6



whether the data are consistent with coming from a shifted gamma distribution.

Define the pdf of flight durations (which is what we want to determine) as

f(x; θ), wherex is the random variable representing a flight duration (in s),andθ

is a vector of parameters. We will find the maximum likelihoodestimates (MLEs)

for the parameters, by maximizing the log-likelihood function18, 19 l(θ|r) defined

by

l(θ|r) = log[L(θ|r)] (11)

= log[P(r|θ)] (12)

= log

[

n
∏

i=1

P(ri|θ)

]

(13)

=
n
∑

i=1

log [P(ri|θ)] , (14)

whereL(θ|r) is the likelihood function forθ given the datar, n = 1416 is the

total number of flights and P(ri|θ) is the probability of obtaining a recordri when

the parameters in the pdf are given byθ.

Clearly, some values ofri will be repeated. So we definedj to be the number

of records that equalj, wherej = 1, 2, 3, ..., J , andJ = maxi(ri) is the maximum

record. Note that
∑J

j=1 dj = n. Since only records of 4 and above are considered,

we haved1 = d2 = d3 = 0.
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So the multinomial log-likelihood function31 is

l(θ|r) =
J
∑

j=1

dj log [P(j|θ)] . (15)

For a single flight, ifR is the random variable representing the value of the

record, then

P(R = j|θ) =
∫

∞

0
P(R = j|flight duration isx)f(x; θ)dx, (16)

for integer values ofj = 1, 2, 3, ..., J . Next, define the random variableU to be

the time from a bird taking off from the water to the time of thenext dry reading

by the salt-water logger. Then, for each flight,U is uniformly distributed on the

interval[0, 10) seconds, such that its pdf is

gU(u) =



















1
10

, u ∈ [0, 10)

0, otherwise.

(17)

Then to obtain a recordj, thex−U interval that commences at the first dry reading

must last long enough to get a furtherj − 1 dry readings, but not last long enough

to getj more. Thus

P(R = j|flight duration isx) = P(10(j − 1) ≤ x − U < 10j) (18)

= P(10(j − 1) − x ≤ −U < 10j − x) (19)

= P(x − 10j < U ≤ x − 10(j − 1)) (20)
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=
∫ x−10(j−1)

x−10j
gU(u)du, (21)

where the final line comes from the known pdf ofU .

The two limits of the integral are 10 s apart, and so givenx there are two

cases:

i) The top limit of the integral is in[0, 10) and therefore the bottom limit is not,

i.e. x − 10(j − 1) ∈ [0, 10), such thatx ∈ [10(j − 1), 10j). Then, from (17),

∫ x−10(j−1)

x−10j
gU(u)du =

∫ x−10(j−1)

0

1

10
du (22)

=
x − 10(j − 1)

10
. (23)

ii) The bottom limit of the integral is in[0, 10) and therefore the top limit is not,

i.e. x − 10j ∈ [0, 10), such thatx ∈ [10j, 10(j + 1)). Then, from (17),

∫ x−10(j−1)

x−10j
gU(u)du =

∫ 10

x−10j

1

10
du (24)

=
10 − x + 10j

10
. (25)

These two cases simplify to

P(R = j|flight duration isx) =







































1 + x
10

− j, x ∈ [10(j − 1), 10j)

1 − x
10

+ j, x ∈ [10j, 10(j + 1))

0, otherwise.

(26)
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So, say that a bird flies forx seconds, withx ∈ [60, 70). Then P(R = 7|x) =

1 + x/10 − 7, from settingj = 7 in (26), and P(R = 6|x) = 1 − x/10 + 6, from

settingj = 6 in (26). As required, these two probabilities sum to 1 and no other

records are possible for this flight.

Now, (16) becomes

P(R = j|θ) =
∫ 10j

10(j−1)

(

1 +
x

10
− j

)

f(x; θ)dx +
∫ 10(j+1)

10j

(

1 −
x

10
+ j

)

f(x; θ)dx

(27)

=
∫ 10(j+1)

10(j−1)
f(x; θ)dx −

∫ 10j

10(j−1)

(

j −
x

10

)

f(x; θ)dx

−
∫ 10(j+1)

10j

(

x

10
− j

)

f(x; θ)dx. (28)

The first term in (28) represents all flights in the range10(j − 1) to 10(j +1), and

the second and third terms then reduce this to account for thesampling protocol.

A formulation that is useful numerically is

P(R = j|θ) = (1 − j)
∫ 10j

10(j−1)
f(x; θ)dx + (1 + j)

∫ 10(j+1)

10j
f(x; θ)dx

+
1

10

[

∫ 10j

10(j−1)
xf(x; θ)dx −

∫ 10(j+1)

10j
xf(x; θ)dx

]

. (29)

Since flights of less than 30 s are not considered to be part of the food-

searching mechanism that we are modelling, we havef(x; θ) = 0 for x < 30.
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Therefore,

P(R = 1|θ) = 0,

P(R = 2|θ) = 0,

P(R = 3|θ) = 4
∫ 40

30
f(x; θ)dx −

1

10

∫ 40

30
xf(x; θ)dx. (30)

Now, we have records ofR = 3 in the data, but some of these will represent dry

times in the range 20-40 s. In the model, and thus (30), we havetakenf(x; θ) = 0

for x < 30 s (see Methods). Since we exclude records of 3 from the data (but the

probability of getting such a record is non-zero), to make the remaining P(R =

j|θ) sum to 1 in the multinomial log-likelihood function we need to divide each

probability by1 − P(R = 3|θ). For the log-likelihood function, this translates

to inserting the definitions P(R = j|θ) from (28) into (15), and then subtracting

n log(1 − P(R = 3|θ)) from the log-likelihood function.

The multinomial log-likelihood function (15) then becomes

l(θ|r) =
J
∑

j=1

dj log

{

∫ 10(j+1)

10(j−1)
f(x; θ)dx −

∫ 10j

10(j−1)

(

j −
x

10

)

f(x; θ)dx

−
∫ 10(j+1)

10j

(

x

10
− j

)

f(x; θ)dx

}

− n log(1 − P(R = 3|θ)).

(31)

This is the function to be maximized with respect to the parameters inθ. It is valid
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for any pdff(x; θ) for flight durations longer than 30 s.

For a gamma distribution of flight durations (in seconds), wehave two pa-

rameters, the shape,s, and the rate,̃r (with units s−1); thus,θ = (r̃, s). The pdf

is

f(x; θ) =























r̃s

Γ (s)
(x − 30)s−1e−r̃(x−30), x > 30

0, x ≤ 30.

(32)

In the main text we discuss flight durationst in h, given byt = 3600x, and so

report the rater in units h−1, given byr = r̃/3600.

We numerically found the values ofr̃ ands that maximize the log-likelihood.

To test for goodness-of-fit we used the G-test (likelihood-ratio test) with Williams’s

correction29. The 95% CIs were obtained by the profile likelihood-ratio test18.

The statisticR′ = 2(l̃p − l̃MLE) has a chi-square distribution with 1 df, where

l̃p is the negative log likelihood of the data given parameter value p (i.e. shape

or rate), and̃lMLE is the negative log likelihood of the data at the MLE values18.

The 95% confidence interval for shape, for example, is then given by values of

shape for whichR′ < χ2
0.95[1], wherel̃p is minimized (with respect to rate) for

each value of shape. All computations were performed using R, version 2.2.0

(www.r-project.org).
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Supplementary Methods 2. Derivation of likelihood function for flights in

1992

First, in Supplementary Fig. 6 we show the raw 1992 logger data, before and

after adjustments of the first and last dry sequences. These are the same data as

in Fig. 3a, but plotted on linear axes and not binned. Plotting this way clearly

identifies the individual long sequences that get removed. In Fig. 3c we show the

same data as a rank-frequency plot, as in Fig. 1 for the 2004 data.

The 1992 data were obtained from salt-water loggers, but thesampling pro-

tocol was different to that for the 2004 data. In 1992, the devices took a wet/dry

reading every 3 s. For every 15 s interval, a bird was considered to be on the water

if the logger was wet for 9 s or more. Due to data storage limitations, the logger

only saved the total number of 15 s intervals in each hour for which the bird was

considered wet. Thus the time series for each bird consistedof a number from

0 to 240 every hour (e.g. Fig. 1 of ref. 7). Thus, flights shorter than 1 h could

not be directly inferred from the data, because a wet count of60, for example,

could imply one flight of 45 minutes ( [240-60]/240 of an hour), or several shorter

flights interspersed by landings. So in ref. 7, consecutive hourly wet counts of 0,

in between non-zero hours, were used to give flight times of1, 2, 3, ... hours. A
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sequence of hours that goes wet-dry-wet was then assumed to be a flight of 1 h.

However, such a 1 h record of dry readings could come from a true flight

anywhere in the range 1-3 h. For example, consider the situation where the hourly

counts started at 10:00, 11:00, 12:00 and 13:00, and a bird took off at 10:15 for

a 2.5 h flight, landing again at 12:45. Then only the 11:00-12:00 hourly record

would be completely dry, and so in ref. 7 this 2.5 h flight wouldhave been con-

sidered to be a 1 h flight. Similarly, some flights of duration 1-2 h will not give a

completely dry hour, and so will not get recorded at all in thedata. Here we mod-

ify the approach developed above for the 2004 data to take both of these factors

into account, and obtain the relevant likelihood function to infer the distribution

of actual flight durations.

We define the pdf of true flight durations asg(t; θ), wheret is the random

variable representing a flight duration (in hours), andθ is again a vector of pa-

rameters. The data set is the set of recordsv = {vi}, i = 1, 2, 3, ..., N , with

each recordvi being a number of consecutive dry hours recorded between two

wet hours, andN = 335 is the number of flight records (pooled for all birds) in

the data set.
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Analogous to (15), we want to determine and maximize the multinomial

log-likelihood functionl(θ|v) given by

l(θ|v) =
Jv
∑

j=1

cj log [P(j|θ)] , (33)

wherecj is the number (count) of records that equalj, Jv = maxi(vi) is the

maximum record, and P(j|θ) is the probability of obtaining a recordj when the

parameters areθ.

For a single flight, ifV is the random variable representing the value of the

record, then

P(V = v|θ) =
∫

∞

0
P(V = v|flight duration ist)g(t; θ)dt. (34)

We will later substitute this into (33), replacingv by j.

Considering only flights≥ 1 h, we define the random variableUh to be the

time (in h) between a bird taking off and the start of the next hourly block of 240

measurements. Then,Uh is uniformly distributed on the interval[0, 1) hours, such

that its pdf is simply

gUh
(uh) =



















1, uh ∈ [0, 1)

0, otherwise.

(35)
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Then, analogous to (18)-(21),

P(V = v|flight duration ist) = P(v ≤ t − Uh < v + 1) (36)

= P(v − t ≤ −Uh < v − t + 1) (37)

= P(t − v − 1 < Uh ≤ t − v) (38)

=
∫ t−v

t−v−1
gUh

(uh)duh. (39)

The two limits of the integral are 1 h apart, and so givent there are two

cases:

i) The top limit of the integral is in[0, 1) and therefore the bottom limit is not, i.e.

t − v ∈ [0, 1), such thatt ∈ [v, v + 1). Then

∫ t−v

t−v−1
gUh

(uh)duh =
∫ t−v

0
1 duh (40)

= t − v. (41)

ii) The bottom limit is in[0, 1) and therefore the top limit is not, i.e.t − v − 1 ∈

[0, 1), such thatt ∈ [v + 1, v + 2). Then

∫ t−v

t−v−1
gUh

(uh)duh =
∫ 1

t−v−1
1 duh (42)

= 2 − t + v. (43)
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These two cases simplify to

P(V = v|flight duration ist) =







































t − v, t ∈ [v, v + 1)

2 − t + v, t ∈ [v + 1, v + 2)

0, otherwise,

(44)

for v > 0. So say a bird flies fort hours witht ∈ [5, 6). Then P(V = 5|t) = t−5,

from settingv = 5 in (44), and P(V = 4|t) = 6 − t, from settingv = 4 in (44).

As required, these two probabilities sum to 1 and no other records are possible.

Forv = 0,

P(V = 0|flight duration ist) =







































1, t ∈ [0, 1)

2 − t, t ∈ [1, 2)

0, otherwise,

(45)

i.e. all flights< 1 h yield a record of 0, and so do some flights of duration 1-2h.

These latter flights would not be present in the data set.

Now, for v > 0 equation (34) becomes

P(V = v|θ) =
∫ v+1

v
(t − v)g(t; θ)dt +

∫ v+2

v+1
(2 − t + v)g(t; θ)dt.

Forv = 0 we insert (45) into (34) to obtain

P(V = 0|θ) =
∫ 1

0
g(t; θ)dt +

∫ 2

1
(2 − t)g(t; θ)dt. (46)
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We do not have records ofv = 0 in the data. So analogous to the incorpo-

ration of (30) for the 2004 data, but for a different reason, for v > 0 we need to

divide each P(V = v|θ) by 1 − P(V = 0|θ). Then the multinomial probabilities

sum to 1 in the likelihood function. Again, we insert the definitions P(V = v|θ)

from (46) into (33), replacingv by j, and subtractN log(1 − P(V = 0|θ)) from

the log-likelihood function.

The resulting multinomial log-likelihood function (33) isthen

l(θ|v) =
Jv
∑

j=1

cj log
{
∫ j+1

j
(t − j)g(t; θ)dt +

∫ j+2

j+1
(2 − t + j)g(t; θ)dt

}

− N log(1 − P(V = 0|θ)). (47)

This is the function to be maximized to find the MLEs and confidence intervals

for the parameters inθ, and to be used in goodness-of-fit tests.

To test for the shifted gamma distribution of flight durations, as for the 2004

data, we have

g(t; θ) =























rs

Γ (s)

(

t − 1
120

)s−1
e−r(t−1/120), t > 1

120

0, t ≤ 1
120

.

(48)

wheret is in hours,s is the shape parameter,r is the rate parameter in h−1, and

1/120 = 30/3600 is the conversion of 30 s into hours.
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Supplementary Methods 3. Calculations of the expected number of misclas-

sified flight durations for 1992 data

From the above calculations for the 1992 data, it is clear that errors can arise from

assuming that all flights in the range 1-2 h yielded records of1. Furthermore,

flights in the range 2-3 h can yield records of 1. In ref. 7 it wasimplicitly assumed

that a record of 1 represented a flight of 1-2 h, and no account was taken of the data

sampling protocol. The results in Fig. 3b show that the data-sampling protocol and

binning procedure do need to be properly accounted for to determine the expected

distribution of flight durations.

Assuming that the pdf (48) with MLE values represents the true distribution

of flight durations, we now determine the expected number of true flights that

would have been in the range 1-2 h but were missed completely by the sampling

protocol (as they would have ended up with a record of 0).

We first calculateNf , the expected total number of flights (including those

that did not get recorded) that would have been required to yield the 335 records.

ThusNf consists of the 335 recorded flights (that by definition were all ≥ 1 h),

plus the flights of 1-2 h that did not get recorded, plus the flights< 1 h (that were
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not recorded).

The 335 records are those> 0, thus

[1 − P(V = 0|θ̂)]Nf = 335, (49)

where1 − P(V = 0|θ̂) is the probability of getting a record> 0, given that the

parameters take the MLE valuesθ = θ̂. Using the known̂θ, we have

P(V = 0|θ̂) = 0.534, (50)

i.e. over half of theNf flights are expected to give a record of 0, and thus will not

explicitly show up in the data (many of them will be< 1 h). Then

Nf = 719, (51)

of which 335 are expected to give records≥ 1 and thus be detected in the data.

The expected number of 0 records resulting from flights of duration t ∈

[1, 2), which we will callE0, is given by

E0 = P(V = 0|t ∈ [1, 2)) × P(t ∈ [1, 2)) × Nf (52)

=
∫ 2

1
P(V = 0|t)g(t; θ̂)dt × Nf (53)

=
∫ 2

1
(2 − t)g(t; θ̂)dt × Nf (54)

= 78, (55)
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where we have used (45) withv = 0 to obtain (54), and rounded to the nearest

integer (and shall continue to do so where appropriate).

The expected total number of flights in the range[1, 2) is

∫ 2

1
g(t; θ̂)dt × Nf = 143. (56)

Thus, we expect there to be 143 flights of duration 1-2 h, of which 78 will not be

directly detected by the data. So simply considering records of 1 to represent all

the 1-2 h flights is incorrect.

Finally, we calculate the expected number of flights of duration 2-3 h that

will give a record of 1 h (call thisE1). These would have been incorrectly consid-

ered to be flights in the range 1-2 h in ref. 7. Similarly to above, we have

E1 =
∫ 3

2
P(V = 1|t)g(t; θ̂)dt × Nf (57)

=
∫ 3

2
(3 − t)g(t; θ̂)dt × Nf (58)

= 47, (59)

where we have used (44) withv = 1 to obtain (58). Analogous to (56), we expect

a total of 88 flights in the range 2-3 h. So of these 88 flights we expect 47 to yield

a record of 1, and thus these 47 would have been incorrectly assumed in ref. 7 to

represent flights of duration 1-2 h.
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So in summary, in the data there were 102 records of 1, and 92 of2, which

would have been considered in ref. 7 to respectively represent flights in the ranges

1-2 h and 2-3 h. However, here we have shown that we would expect there to

be (based on the MLE values) 143 real flights in the range 1-2 h,of which only

65 would yield a record of 1, the remaining 78 giving a record of 0 and thus not

be detected by the data. And we would expect 88 true flights in the range 2-3 h,

but that 47 of these would yield a record of 1, and therefore have been incorrectly

considered to be of duration 1-2 h.

Supplementary Methods 4. Likelihood function for a power law over a bounded

range for prebinned data

The bumblebee and deer data shown in ref. 10 were digitized from histograms

presented in the original papers27, 28. Here we develop a likelihood approach to

analyze these data sets. The methods are general and so can beapplied to any

binned data set.

We want to test whether a power law occurs over a given range[a, b]. Thus,

the pdf is

f(x) = Cx−µ, x ∈ [a, b], (60)
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whereC is the normalization constant given byC = (µ−1)/(a1−µ−b1−µ), which

is obtained by solving
∫ b
a f(x)dx = 1. We are only considering the distribution of

data that lie in the range[a, b]. This formulation requires explicit specification of

the range over which power-law behaviour is being tested. Itis commonly stated

that a power law occurs over ‘the tail of the distribution’, and a line drawn or fitted

over this range, without qualification as to how the tail[a, b] is determined.

Consider the data to be countsdj in bins indexed byj = 1, 2, 3, ..., J , defin-

ing J to be the index of the final bin. Letw be the bin width (assumed equal for

all bins), such that first bin covers the rangea to a + w, and the right-hand side

of the final bin isa + Jw. The maximum value that we consider attainable by the

data,b, thus satisfiesb ≥ a + Jw. Simply takingb to equala + Jw assumes that

the maximum data point recorded represents the maximum possible attainable (to

within w). This is unlikely to occur in practice, particularly for small data sets,

and especially in a power-law situation. This is a subtle point that has received

little attention.

We defineb = a+J ′w, where integerJ ′ ≥ J . Therefore new binsJ+1, J+

2, ..., J ′ have counts of 0, and sodJ+1 = dJ+2 = ... = dJ ′ = 0. This allows the

possibility that measurements could attain values higher than those that happen to
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be sampled in the particular data set being studied.

For a single data value, the probability of being in binj given the parameter

µ is

P(being in binj|µ) =
∫ a+jw

a+(j−1)w
Cx−µdx (61)

=
C

1 − µ

[

x1−µ
]a+jw

a+(j−1)w
(62)

=
C

1 − µ

[

(a + jw)1−µ − (a + (j − 1)w)1−µ
]

(63)

=
(a + (j − 1)w)1−µ − (a + jw)1−µ

a1−µ − b1−µ
, (64)

substitutingC to obtain (64). Note that
∑J ′

j=1 P(being in binj|µ) = 1, as required.

The log likelihood function, analogous to (15), is

l(µ|data) =
J
∑

j=1

dj log [P(being in binj|µ)] (65)

= −n log(a1−µ − b1−µ) +
J
∑

j=1

dj log
[

(a + (j − 1)w)1−µ − (a + jw)1−µ
]

,

(66)

which can be used to find MLEs and confidence intervals. The summation is taken

to J instead ofJ ′ becausedJ+1 = dJ+2 = ... = dJ ′ = 0. Therefore, an increase

in b does not change the summation term in (66), but only changes the first term;

the first term is related to the normalization constantC. The likelihood function
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for the idealized infinite power-law tail can be derived using the same approach,

and the resulting function is equivalent to taking the limitb → ∞ in (66).

Supplementary Methods 5. Likelihood function for an exponential distribu-

tion over a bounded range for prebinned data

The pdf for an exponential distribution over the range[a, b] is

f(x) = Ae−λx, x ∈ [a, b], (67)

whereA is the normalization constant given byA = λ/(e−λa −e−λb), as obtained

by solving
∫ b
a f(x)dx = 1.

For a single data value, the probability of being in binj given the parameter

λ is

P(being in binj|λ) =
∫ a+jw

a+(j−1)w
Ae−λxdx (68)

= −
A

λ

[

e−λx
]a+jw

a+(j−1)w
(69)

= −
A

λ

[

e−λ(a+jw) − e−λ(a+(j−1)w)
]

(70)

= −
Ae−λ(a+jw)

λ

[

1 − eλw)
]

(71)

=
e−λ(a+jw)

[

eλw − 1
]

e−λa − e−λb
. (72)
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The log likelihood function is then

l(λ|data) =
J
∑

j=1

dj log [P(being in binj|λ)] (73)

= n log

(

eλw − 1

e−λa − e−λb

)

− λna − λw
J
∑

j=1

djj. (74)

The likelihood function for the idealized infinite tail (so testing a standard ex-

ponential distribution that has been shifted bya) can be derived using the same

approach. The resulting function is equivalent to taking the limit b → ∞ in (74),

and can be solved analytically to obtain the MLE ofλ.

Supplementary Methods 6. Analysis of deer data

Figures 3c and 3d of ref. 10 show log-log histograms of foraging times of deer, for

unfenced and fenced scenarios. The data were digitized fromref. 27. In ref. 10 the

foraging times were assumed to represent time intervals between the deer finding

food. However, the times actually represent time spent cropping and processing

food at a particular foraging site (pages 608 and 610 in ref. 27), i.e. handling times,

rather than time spent moving between stations. Nevertheless we re-analyzed

the data in order to test the methods commonly used to demonstrate Lévy flight

behaviour.
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We digitized the original histograms from ref. 27 to obtain the data. In the

log-log histograms in ref. 10 (our Fig. 4) these same values were plotted on a

log-log scale, with no lumping of the original bins. Thus thelog-log histograms

show bins that are of equal width on a linear scale (namely a width of 20 s, as in

the original histograms in ref. 27). However, for the original wandering albatross

study7, the log-log histograms had bins that progressively doubled in width. And

for the wandering albatross plot, the geometric means (midpoints on a log scale)

of bins were plotted on the abscissa, whereas for the deer themidpoints on a linear

scale were used. Our likelihood approach avoids these potential sources of error.

For both scenarios, the final bin of the original data was seemingly omitted

in ref. 10. We do likewise, so that we perform our statisticalstudies on the same

data as used in ref. 10. Also, the lumping of bins means that bins of zero count in

the original data do not show up in any way on the log-log histograms (but they

do get considered in our likelihood approach).

In Figures 3c and 3d of ref. 10 (our Fig. 4), the straight linesrepresenting

power laws were drawn across all points excluding the first point (i.e. the tails were

considered to be the second points onwards). Thus, for the ranges[a, b] needed for

our likelihood analyses, we use the outside endpoints of these bins. Specifically,
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for the unfenced scenario we have[a, b] = [20, 180], and for the fenced scenario

[a, b] = [20, 120].

The Lévy flight hypothesis, as conventionally stated, relates to power-law

tails with no mention of an upper limit (i.e.b → ∞). We tested both data sets

under the assumption of no upper limit, and both sets gavep < 10−4 for the power

law, and Akaike weights< 10−8 for the power law compared to the exponential.

Thus, a true Lévy flight with an infinite tail is completely inconsistent with the

data.

Supplementary Methods 7. Analysis of bumblebee data

Figure 3a of ref. 10 shows two linear histograms of inter-flower distances flown

by bumblebees. The data were digitized from ref. 28. One histogram is for a

high-food scenario and the other is for a low-food scenario.In Fig. 3b of ref. 10

these data sets were plotted on a log-log histogram, and lines of slopeµ ≈ 2 and

µ ≈ 3.5 were shown to indicate power-law behaviour in the tails.

To obtain the data for our analyses, we digitized the original histograms

from ref. 28 as well as the reproduced linear histograms fromref. 10, so that
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we could minimize any discrepancies due to digitization. Consider the low-food

case, namely the second diagrams in Fig. 3a of ref. 10 and Fig.4 of ref. 28. The

original bin width isw = 37.5, and the values plotted are percentages of the total

352 flights. To obtain the counts we utilized this latter factbecause each count

must be a multiple of 100/352. (The units of distance were given in the original

Fig. 4 of ref. 28 as cm, but should actually be mm, as in Figures1 and 2 of ref. 28;

B. Heinrich, pers. comm. This does not affect our conclusions, or those of ref. 10).

The final bin in the tail of the original ref. 28 plot was omitted in the ref. 10 plot.

We do likewise as our interest is in comparing methods for evaluating power laws,

and so wish to be consistent with the data used in ref. 10.

For the log-log histograms in ref. 10, the data were smoothedusing running

averaging and then lumped10 (but not in the manner described for the albatross

data in ref. 7). We note that a linear regression fit to the seven highest lumped

bins for the low-food scenario gives a slope ofµ = 2.33, larger than the value of

2 shown in Fig. 3b of ref. 10. The likelihood approach presented here avoids any

issues concerning the lumping of bins, and uses the originalraw data as binned in

ref. 28.

For both food scenarios we need a range of[a, b] over which to test the
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power-law and exponential models. We used the ranges implied by the straight

lines drawn in Fig. 3b of ref. 10. For both scenarios we takea = 150, which

is the only value that is consistent with being both a break point of the original

bins of ref. 28, and with lying between the third and fourth lumped bins in Fig. 3b

of ref. 10 (which is where the power-law lines are drawn to). For the high-food

scenario we takeb = 412.5 (the endpoint of the corresponding line on Fig. 3b

of ref. 10), and for the low-food scenario we takeb = 937.5, which is the right

endpoint of the range of data included in the final lumped bin in Fig. 3b of ref. 10.

These values, as used in the main text, assume that the highest data recorded is the

highest data possible, and are the most favourable for the power law compared to

the exponential.

In Supplementary Table 1, for the high-food scenario, we show the effect

of increasingb above the default value of 412.5, to allow for the (very likely)

possibility that the true value ofb will be larger than that based on the largest

observed data. This possibility is particularly likely to occur for power laws. We

also test the models under the idealized Lévy flight assumption of an infinite tail

(i.e.b → ∞). Supplementary Table 1 demonstrates that the computed MLEvalue

for µ is sensitive tob, and that neither model is strongly favoured for any value of
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b, even for the idealized infinite situation.

In Supplementary Table 2 we test the sensitivity tob for the low-food sce-

nario. Extendingb to just one or two bins beyond the default shows that the mild

support in favour of the power law (as given by the Akaike weights) is not robust

to the value ofb. For the idealized assumption of an infinite tail, the exponential

distribution is overwhelmingly favoured. In reality, the ‘true’ value ofb in any

situation will lie somewhere between these extremes. This is a general issue that

requires further attention.

31. Lawless, J. F.Statistical Models and Methods for Lifetime Data (2nd ed.,

Wiley series in Probability and Statistics, Wiley, New Jersey, 2003).
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Supplementary Table 1. Sensitivity to b for high-food bees data

Final bin b MLE for µ MLE for λ Akaike weights

(95% CI) (95% CI) Power law Exponential

G, p G, p

11 412.5 3.68 0.0153 0.59 0.41

(2.14, 5.42) (0.0086, 0.0234)

0.16, 0.69 0.59, 0.44

12 450 3.85 0.0159 0.55 0.45

(2.38, 5.55) (0.0094, 0.0237)

0.10, 0.75 0.50, 0.48

13 487.5 3.97 0.0162 0.52 0.48

(2.54, 5.63) (0.0099, 0.0239)

0.075, 0.78 0.46, 0.50

25 937.5 4.29 0.0166 0.41 0.59

(3.06, 5.84) (0.0108, 0.0241)

0.063, 0.80 0.41, 0.52

none ∞ 4.34 0.0166 0.40 0.60

(3.18, 5.87) (0.0108, 0.0241)

0.076, 0.78 0.41, 0.52
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Supplementary Table 1. Sensitivity tob for bumblebee data in high-food sce-

nario. Final bin values represent the index of the right-most original bin28 that

is included;b is then the right endpoint of this bin. A final bin of 11 was used

in the main text, and the value of 25 is also used here as that isthe default for

the low-food scenario (so it could be argued that here we havecounts of 0 in bins

12 to 25). Settingb → ∞ represents the idealized Lévy flight assumption of no

maximum value. The MLE forµ is sensitive tob. For all goodness-of-fit tests,

n = 25 and df=1. The small sample size and rapid decay of the distributions mean

that for all the values ofb, neither model conclusively has the most support.
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Supplementary Table 2. Sensitivity to b for low-food bees data

Final bin b MLE for µ MLE for λ Akaike weights

(95% CI) (95% CI) Power law Exponential

G, p G, p

25 937.5 2.20 0.00609 0.78 0.22

(1.84, 2.60) (0.00497, 0.00732)

11.3, 0.19 13.1, 0.11

26 975 2.23 0.00614 0.68 0.32

(1.88, 2.61) (0.00503, 0.00736)

11.2, 0.19 12.8, 0.12

27 1012.5 2.26 0.00618 0.58 0.42

(1.91, 2.63) (0.00508, 0.00739)

11.2, 0.19 12.5, 0.13

none ∞ 2.66 0.00635 0.001 0.999

(2.39, 2.96) (0.00531, 0.00751)

14.3, 0.07 11.7, 0.16
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Supplementary Table 2. Sensitivity tob for bumblebee data in low-food sce-

nario. A final bin of 25 was used in Table 1, but adding just one or two extra

bins of zero count (bins 26 and 27) shows that the weights are sensitive tob, and

that no model is conclusively preferred. Allowing an infinite tail overwhelmingly

favours the exponential. For all goodness-of-fit tests,n = 129 and df= 8.
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Supplementary Figure 1. Original log-log histogram of 1992wandering alba-

tross flight durations (Fig. 3a of ref. 7) computed here from the original raw

data. Breakpoints of bins are at 1, 2, 4, 8, 16, 32, 64 and 128 h (with bin intervals

1 ≤ t < 2, 2 ≤ t < 4, etc.), and results are plotted at the geometric means. The

frequencies are each normalized by their respective bin widths to yield frequency

densities that compensate for the increasing bin widths30 (termed logarithmic bin-

ning with normalization, LBN, in ref. 24). The straight lineindicates a power law

of exponentµ = 2 (ref. 7). This is the original figure that then gets correctedin

Fig. 3a.
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Supplementary Figure 2. The 2004 data as log-log histogram (LBN method).

Red curve is the MLE fitted gamma distribution (2), shown in main text to be

a good fit (p = 0.83). The lowest bin contains just the records of 30 s, which

were not used in the likelihood maximization (because they will include some

true dry durations of 20-30 s, which are not considered flights, as outlined in

Supplementary Methods 1). The large values of scaled frequency occur because

the counts are scaled by the bin widths, which are small (in hours) for the shorter

flights.
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Supplementary Figure 3. Rank/frequency plot for individual birds 1-9 from

2004.Red curves are number of flights predicted from the MLE gamma distribu-

tion (2) as fitted to the pooled data (i.e. as in Fig. 1), scaledto the total number of

flights for each bird. Blue curves are the MLE exponential fit individually to each

bird. The individual data sets seem more consistent with coming from the pooled

gamma distribution than from individual exponential distributions, suggesting

that the pooled gamma distribution does not arise as a mixture of exponentials.
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Supplementary Figure 4. Rank/frequency plot for individual birds 10-18

from 2004. As Supplementary Figure 3, for the next 9 birds.
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Supplementary Figure 5. Rank/frequency plot for individual birds 19-20

from 2004. As Supplementary Figures 3 and 4, for the remaining 2 birds.
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Supplementary Figure 6. The 1992 data as in Fig. 3a, but unbinned and on

linear axes. aRaw logger data before adjusting for time spent on Bird Island.

Values were binned to obtain the blue circles in Fig. 3a. Frequency axis is trun-

cated at 10 to clearly show the individual counts in the tail of the histogram, and

a 15 h dry sequence, for example, is counted in the 15-16 h bin.b As a, but after

adjusting the first and last dry sequences. Values were binned to obtain the red

circles in Fig. 3a. It is clear that the adjustment of first andlast dry sequences

removes the longest ones.
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