
 

Journal of Animal Ecology

 

 2008, 

 

77

 

, 1212–1222 doi: 10.1111/j.1365-2656.2008.01428.x

 

© 2008 The Author. Journal compilation © 2008 British Ecological Society

 

Blackwell Publishing Ltd

 

Using likelihood to test for Lévy flight search patterns 

and for general power-law distributions in nature

 

Andrew M. Edwards*

 

Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia, 

 

Canada V9T 6N7, and British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK

 

Summary

 

1.

 

Ecologists are obtaining ever-increasing amounts of data concerning animal movement. A
movement strategy that has been concluded for a broad variety of animals is that of Lévy flights,
which are random walks whose step lengths come from probability distributions with heavy power-law
tails.

 

2.

 

The exponent that parameterizes the power-law tail, denoted 

 

μ

 

, has repeatedly been found to be
within the Lévy range of 1 

 

<

 

 

 

μ

 

 

 

≤

 

 3. Here, we use Monte Carlo simulations to show that the methods
used to infer the value of 

 

μ

 

 are inaccurate.

 

3.

 

The widely used method of  simply logarithmically transforming a standard histogram of
movement lengths has been shown elsewhere to be problematic. Here, we further demonstrate how
poor it is, and show that it actually biases estimates of 

 

μ

 

 towards the Lévy range of 1 

 

<

 

 

 

μ

 

 

 

≤

 

 3, and
can bias estimates towards the value of 

 

μ

 

 

 

=

 

 2. Thus, previous reports of animals undergoing Lévy
flights, or of 

 

μ

 

 being close to the reported optimal value of 

 

μ

 

 

 

=

 

 2, may simply be a consequence of
the bias generated by this method.

 

4.

 

A technique that has been recently recommended is to logarithmically bin the data and then
normalize the resulting histogram. We show that this technique also produces biased results, and
suffers from similar problems as those just outlined, although to a lesser extent.

 

5.

 

The proposed solution is to use likelihood. We find that calculating the maximum likelihood
estimate of  

 

μ

 

 gives the most accurate results (having also tested the rank/frequency method).
Likelihood has the further advantages of being the easiest method to implement, and of yielding
accurate confidence intervals. Results are applicable to power-law distributions in general, and so
are not restricted to inference of Lévy flights.

 

6.

 

We also re-analyse a data set of grey seal movements that was originally reported to demonstrate
Lévy flight behaviour. Using Akaike weights, we test four models, and find no evidence for Lévy
flights. Overall, our results suggest that Lévy flights might not be as common as previously thought.
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Introduction

 

Huge amounts of  quantitative data are obtained from
devices attached to animals in their natural environment
(Ropert-Coudert & Wilson 2005). Technological advances in
miniaturization and memory capacity, driven by consumer
demand for new electronic devices, will fuel a continuing
increase in the acquisition of such data (Ropert-Coudert &
Wilson 2005). Here, we are concerned with data that are used

to ascertain movement of individuals, and how these data are
interpreted and analysed to infer search patterns.

A recent approach is to explicitly model the dynamics
of individuals using Bayesian state-space models (Jonsen,
Myers & Mills Flemming 2003; Jonsen, Mills Flemming &
Myers 2005; Jonsen, Myers & James 2007). This approach
allows use of  explicit mechanistic biological models to
determine, for example, the switching of a leatherback turtle
between foraging and transiting behavioural modes.

An alternative and easier approach has long been to infer
potential movement rules from the shape of the distribution
of movement lengths. In particular, this has led to the hypothesis
that certain animals’ movement patterns can be described by
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Lévy flights, which are scale-free random walks whose step
lengths come from probability distributions that have heavy
power-law tails (Shlesinger, Zaslavsky & Frisch 1995; ben-
Avraham & Havlin 2000; for an excellent review of  power
laws in general see Newman 2005). The resulting pattern is of
clusters of short moves being connected by rare long moves,
and has fractal properties. Cole (1995) reported the first
observation of fractal time variability in animal behaviour,
which led him to run simulations suggesting that a Lévy flight
might be an efficient search strategy.

The Lévy flight hypothesis then took off  with evidence of
such a search strategy by wandering albatrosses (Viswanathan

 

et al

 

. 1996). This was followed by a claim that a Lévy flight
with an exponent of  two (defined shortly) represents an
optimal foraging strategy under certain conditions, together
with further evidence of Lévy flight behaviour by bumblebees
and deer (Viswanathan 

 

et al

 

. 1999, using data from Focardi,
Marcellini & Montanaro 1996 and Heinrich 1979). The
optimal foraging conclusion prompted other researchers to
use the methods of (or similar methods to) Viswanathan 

 

et al

 

.
(1999) to analyse movement data of other animals. This led to
conclusions of Lévy flight search patterns for the following
(the ‘Lévy fleet’): reindeer (Mårell, Ball & Hofgaard 2002),
side-striped jackals (Atkinson 

 

et al

 

. 2002), microzooplankton
(Bartumeus 

 

et al

 

. 2003), grey seals (Austin, Bowen & McMillan
2004), spider monkeys (Ramos-Fernández 

 

et al

 

. 2004),
Peruvian fishing boats (Bertrand 

 

et al

 

. 2005, 2007), honey
bees (Reynolds 

 

et al

 

. 2007), North Sea fishing boats (Marchal,
Poos & Quirijns 2007) and human hunter gatherers (Brown,
Liebovitch & Glendon 2007).

However, the conclusions of the original albatross study
(Viswanathan 

 

et al

 

. 1996) have been overturned, because not
all of  the data used actually represented flight times of
albatrosses (Edwards 

 

et al

 

. 2007), as originally thought (see
also Travis 2007). Specifically, the misinterpreted flights
turned out to be the longest flights – precisely the ‘flights’ that
were crucial to the Lévy flight hypothesis. Analysis of  the
corrected data, and of similar, more recent, higher-resolution
data, concluded no evidence for Lévy flight search patterns of
wandering albatrosses.

The conclusions concerning deer and bumblebees have also
been overturned (Edwards 

 

et al

 

. 2007). In the original study
(Viswanathan 

 

et al

 

. 1999), the data were plotted as histograms
on log–log axes, and straight lines drawn to conclude Lévy
flight behaviour. Edwards 

 

et al

 

. (2007) re-analysed these data
using an approach involving likelihood (Hilborn & Mangel
1997) and Akaike weights (Burnham & Anderson 2002;
Johnson & Omland 2004), and found that the data did
not support the Lévy flight hypothesis for either deer or
bumblebees (furthermore the deer data were not actually
related to movement).

Sims, Righton & Pitchford (2007) helpfully explained how
two methods have generally been used to ascertain the Lévy
exponent. The first involves constructing a histogram of the
movement data, and simply log transforming the axes
(termed the LT method by Sims 

 

et al

 

. 2007; techniques are
described here in full in Methods and Results). A straight line

is then fitted to the resulting points, giving a slope of 

 

−μ

 

 from
which the Lévy exponent 

 

μ

 

 is calculated. The second method
involves constructing a histogram with logarithmic bins,
normalizing the count in each bin by the bin width, and then
plotting on log–log axes; this is called log-binning with
normalization (termed LBN by Sims 

 

et al

 

. 2007). A straight
line is then fitted, again giving a slope of 

 

−μ

 

.
Sims 

 

et al

 

. (2007) tested these methods with simulated data,
and also tested a third method known as the cumulative dis-
tribution or rank/frequency technique (Newman 2005, here
denoted as RF method). Sims 

 

et al

 

. (2007) concluded that the
LBN method was the best method for minimizing the errors
when estimating 

 

μ

 

.
Here, we further test these three methods, and also test a

fourth, that of maximum likelihood estimation (here denoted
as the MLE method). We do this by simulating data from a
specified power-law distribution (i.e. a Monte Carlo approach),
so that we know the true value of 

 

μ

 

, and see how well each
method recovers the true known value. We explicitly look at a
range of values of 

 

μ

 

 and sample sizes.
We find that the MLE method is clearly the most accurate

method of the four, and thus recommend its use. It also has
the additional advantage of being the easiest to implement. In
particular, we confirm the claim reported in Box 1 of Edwards

 

et al

 

. (2007) that the MLE method yields a more accurate
estimate for 

 

μ

 

 than the LBN method.
Another concern is that often the estimate for 

 

μ

 

 is found, but
then no goodness-of-fit tests are performed to see if the power-
law conclusion is actually consistent with the data. A straight
line can always be drawn, but it may not be meaningful (i.e. is a
power law a sensible model in the first place?). Often, no other
distributions are tested to see if  they might be better models.

To demonstrate this, we apply the likelihood approach,
plus the Akaike weight analysis described in Edwards 

 

et al

 

.
(2007), to previously published data on an Atlantic grey
seal that were analysed by Austin 

 

et al

 

. (2004) and then re-
analysed by Sims 

 

et al

 

. (2007). This particular seal was one of
those for which Austin 

 

et al

 

. (2004) had inferred Lévy flight
behaviour, by using the LT method. We find that the Lévy
flight model is not supported by the data.

The methods shown here to be inaccurate have not been
confined just to Lévy flight analysis. This work is therefore
applicable to other areas of ecology (and indeed other areas of
physics) that are concerned with investigating power-law
distributions in nature. Indeed, some of the issues covered here
have been studied in other scientific contexts (see Discussion).

All calculations for the work here, plus production of the
figures, were performed using R Version 2.2.0 (R Develop-
ment Core Team 2007).

 

Methods and results

 

DESCRIPTION

 

 

 

OF

 

 

 

METHODS

 

If an organism performs a Lévy flight, then the probability density
function (pdf), 

 

f

 

(

 

x

 

), of its movement lengths, 

 

x

 

, will have a power-law
tail, such that
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f

 

(

 

x

 

) ~ 

 

x

 

−μ

 

, (1)

where 

 

μ

 

 is the exponent and 1 

 

<

 

 

 

μ

 

 

 

≤

 

 3. The symbol ~ is used in
physics to mean that 

 

f

 

(

 

x

 

) ‘goes like’ 

 

x

 

−μ

 

 in the tail. So the tail of the
pdf decays as a power law (rather than, say, an exponential e

 

−

 

x

 

), and,
furthermore, ~ also implies that one is not concerned with precisely
defining the constant (or proportionality) term that appears in front
of 

 

x

 

−μ

 

. This last, subtle, point, may have created some confusion in
the ecological literature: ~ cannot simply be replaced by 

 

=

 

 without
explicitly defining the start of the tail (see below), yet it has been in
the literature (e.g. Brown 

 

et al

 

. 2007). It also precludes any test of
the goodness-of-fit of the proposed pdf to the data, because the pdf
is not precisely defined.

The Lévy flight hypothesis is only concerned with the tail of the
pdf (i.e. the long movements); the distribution of short movements
is not relevant. We define the start of the tail by 

 

a

 

, such that we are
only concerned with the distribution of movements that are 

 

≥

 

 

 

a

 

. In
empirical applications, it is often the case that the full pdf of measured
movements has been considered to be a power law (e.g. Viswanathan

 

et al

 

. 1996; Mårell 

 

et al

 

. 2002; Bartumeus 

 

et al

 

. 2003; Ramos-Fernández

 

et al

 

. 2004; Brown 

 

et al

 

. 2007; Marchal 

 

et al

 

. 2007). Thus, the ‘tail’ is
actually the full pdf of the data. Then 

 

a

 

 would be given by the shortest
measured or measurable movement.

So, just considering movements that are 

 

≥

 

 

 

a

 

 (which may be all
movements in the data set), the pdf for 

 

x

 

 is

 

f

 

(

 

x

 

) = 

 

Cx

 

–

 

μ

 

,

 

x

 

 

 

≥

 

 

 

a

 

, (2)

where 

 

C

 

 is the normalization constant given by 

 

C

 

 

 

=

 

 (

 

μ

 

 

 

−

 

 l)

 

a

 

μ

 

−

 

1

 

.
The ~ has now been replaced by 

 

=

 

, and the constant 

 

C

 

 explicitly

calculated by solving  

 

f

 

(

 

x

 

) now defines a valid pdf.

It is required that 

 

μ

 

 

 

>

 

 1; otherwise  such that 

 

f

 

(

 

x

 

) would 

not integrate to 1 (whatever the value of 

 

C

 

) and so 

 

f

 

(

 

x

 

) would not
represent a pdf. [For 

 

μ

 

 

 

≤

 

 1, 

 

f

 

(

 

x

 

) decays too slowly – at the extreme of

 

μ

 

 

 

=

 

 0 we would have a uniform distribution, which obviously
requires specification of an upper cut-off point that cannot be
defined as 

 

x

 

 

 

→

 

 

 

∞

 

]. For the power-law tail to represent a Lévy flight
requires that 1 

 

<

 

 

 

μ

 

 

 

≤ 3, such that the distribution has infinite variance:

 only for 1 < μ ≤ 3. For μ > 3 the pdf is still a power

law, but without the special properties of a Lévy flight because the
variance is finite. Equation (2) is a Pareto distribution of the first
kind (Johnson, Kotz & Balakrishnan 1994).

Note that μ does not depend on the unit of measurement of x; that
is, it is a dimensionless parameter. This is one reason why relatively
similar values of μ are theoretically possible for the diverse range
of scales associated with the aforementioned Lévy fleet. For the
exponential distribution discussed later, the parameter λ does depend
on the scale of measurement (and would thus change if one measured
distances in metres or kilometres, unlike μ). Thus, a universal value
of λ would not be possible for diverse animals.

The practical problem when analysing a particular data set is:
given the data, what is the value of μ? To be more explicit, consider
a data set of values x = {xi}, with i = 1, 2, 3, ... , n. Suppose we know
that these values come from (2) with a = 1, and are each independent
from one another. We wish to find the value of μ that is most
supported by the data. Determination of μ has been carried out by
the aforementioned four methods that are now described in detail.

Figure 1a shows a standard histogram for an example simulated
data set of 1000 independent random numbers drawn from the pdf

f(x) = x–2, x ≥ 1; (3)

that is, eqn (2) with a = 1, μ = 2. This is the distribution concluded in
the original wandering albatross study (Viswanathan et al. 1996).

�
a

f x x
∞

= ( )   ;d 1

�
a

f x x
∞

= ∞ ( )   d

�
a

Cx x x
∞

− = ∞   μ 2d

Fig. 1. Example of 1000 values drawn from
the power law in eqn (3), for which a = 1,
μ = 2. (a) Simulated data plotted as a
standard histogram, with bin breaks at 0, 10,
20, ... , as determined by the Scott (1979)
algorithm. Note the break in the y-axis
because 907 of the 1000 values fall in the first
bin (the expected proportion of such values is

). The few large values of  x

are indicative of  the heavy power-law tail.
(b) The LT (log transform) method for
determining μ essentially plots the points
from (a) on logarithmic axes, and fits a
straight line, yielding the poor estimate of
μ = 1·476. (c) The LBN (log-binning with
normalization) method yields μ = 1·975.
(d) The RF (rank/frequency) method yields
μ = 2·025. The non-graphical MLE method
yields μ = 2·019.

�
1

10
2 0 9   .–

x dx =
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Random numbers were obtained using the inverse method (also
called the transformation method, Newman 2005): if u is a random
number drawn from the uniform distribution over the range [0, 1],
then x = a(1 − u)1/(1−μ) is a random number from the power-law
distribution (2). We now explain how each of the four methods
was applied to this data set, to estimate the value of μ from the 1000
data points.

The LT method (Fig. 1b) involves computing a standard histogram,
whereby each bin has the same width. The choice of bin width is
often not stated. Here, we followed Bertrand et al. (2005, 2007) and
Marchal et al. (2007) in using the Scott (1979) algorithm to obtain
the bin width (the same algorithm was used for Fig. 1a). The resulting
midpoints of each bin and the counts for each bin are then plotted
on logarithmic (base 10) axes. So log10(count in bin i) was plotted
against log10(midpoint of bin i), such that Fig. 1b is essentially
Fig. 1a on logarithmic axes. A straight line is then fitted by linear
regression, for which the slope is assumed to be −μ, yielding an
estimate for μ. The LT method was originally used by Viswanathan
et al. (1999) to analyse the deer data, and a ‘smoothed’ version used
for the bumblebee data (although lines were sketched rather than
fitted). Using the LT method for our sample of 1000 simulated
values, we obtained μ = 1·476, clearly a very poor estimate for the
true known value of μ = 2.

To clarify a potential source of confusion, note that the slope −μ
is calculated on logarithmic axes for which the axes are labelled by
the log of frequency or log of x [i.e. the ordinate of Fig. lb would be
labelled log10 (frequency) with numbers 0, 1, 2 and 3, instead of 1,
10, 100 and 1000]. But axes are labelled here using unlogged num-
bers (1, 10, 100 and 1000) to aid interpretation and make it easier to
relate the diagrams in Fig. 1 to each other. The same applies for the
LBN and RF methods.

The LBN method (Fig. 1c) involves setting the bin breaks such
that each bin is twice the width of the preceding bin (although, if
desired, bin widths could be chosen to, say, triple in size). Here, since
a = 1, we used bin breaks of 1, 2, 4, 8, 16, 32, 64, ... , as used by Viswa-
nathan et al. (1996). The count in each bin is then divided by the
width of that bin (e.g. Pueyo 2006), to yield a frequency density for
each bin, which can be intuitively thought of as a count per unit
interval of x (Newman 2005). Viswanathan et al. (1996) used such a
normalization (Edwards et al. 2007), although this was not explicitly
stated. The frequency density for each bin is then plotted against the
geometric midpoint of that bin (so for the bin covering 512–1024,
this is √(512 × 1024) � 724). A linear regression on the plotted points
then gives an estimate of μ (as the negative of the slope). The LBN
method for the simulated data set here gave μ = 1·975, performing
far better than the LT method. The LBN method is recommended by
Sims et al. (2007).

Note that in Fig. 1c, the right-most point represents the bin 512–
1024, and thus the count in this bin is 1, as only the value 574 falls in this
bin (see Fig. 1a). Yet in the linear regression, this point is as important
as the other points in determining the slope of the line. Also, the
penultimate bin is empty, covering the range 256–512, but cannot be
plotted on Fig. 1c as zero cannot be plotted on logarithmic axes.

The RF method (Fig. 1d) involves ranking the values in order,
with 1 being the largest. The number of data points ≥ xi (the rank of
xi) is then plotted against xi, for each data value xi. Logarithmic axes
are used, and a straight line fitted to the points. The slope of the
straight line is then assumed to be 1 − μ, from which the estimate for
μ is obtained. As Newman (2005) pointed out, such plots are useful
as they show all the data points, and avoid any (often arbitrary)
determination of bins. Here, we ask whether fitting lines to such
plots is of use when determining μ. For the simulated data, we

obtained μ = 2·025, which, for this data set, is as close to the true
μ = 2 as the estimate from the LBN is.

Finally, the MLE method first requires determination of the like-
lihood function (Hilborn & Mangel 1997; Burnham & Anderson
2002; Crawley 2002). Given known data x, and assuming a to be
known, the log-likelihood function for the power-law tail (Newman
2005; Edwards et al. 2007) is

(4)

where L(μ | data x) is the likelihood of a particular value of the
unknown parameter μ given the known data x (and log is natural
log). The MLE for μ, denoted m, is the most likely value for μ given
the data x, and is given by

(5)

Note that if a = 1, this simplifies further to

(6)

Presented with a particular data set x, the MLE m is far easier to
compute than any of the graphical methods that involve fitting
straight lines to the data plotted on log-log axes – just insert the
data values into eqn (5) or eqn (6). If the full data set is assumed to
come from a power-law distribution but a is not known a priori,
then the MLE for a is the minimum value of the data.

For the simulated data set, the MLE method yielded m = 2·019,
with a 95% confidence interval (computed using the profile likelihood-
ratio test, Hilborn & Mangel 1997) of (1·957, 2·083). Thus, based on
the particular simulated data set shown in Fig. 1a, the MLE method
appears best, but only by a small margin. Newman (2005) also
found the MLE method to be accurate for a single simulated data set.

ACCURACY OF METHODS

The four estimates of μ just discussed were calculated for the single
simulated data set of 1000 random numbers drawn from eqn (3).
The results obviously depend on the particular 1000 random numbers.
So we repeated the above calculations on 10 000 independent
simulated samples, each of 1000 random numbers (10 000 is the
number recommended by Crawley 2002, and used by Sims et al. 2007).
Thus, for each of the four methods, we obtained 10 000 estimates for
μ, each of which depended on the particular 1000 random numbers
drawn each time from the power law with known exponent μ = 2.
Thus, if observational data truly come from a power law with the
theoretically optimal exponent of μ = 2, we asked how well would
each of the four methods estimate the value of μ?

Figure 2 shows the resulting histograms of 10 000 estimates for μ,
one histogram for each method. Summary statistics are shown in
Table 1.

The LT method is clearly very poor (Fig. 2a). All 10 000 estimates
of μ fell below the true value of μ = 2 (Table 1). Goldstein, Morris &
Yen (2004) found similar inaccuracies for the discrete equivalent of
our continuous power law (known as the zeta distribution or dis-
crete Pareto distribution). Sampling 10 000 random numbers from
the discrete Pareto distribution with known exponent γ = 2·5, and
repeating this 50 times, they found the LT method to give a poor
estimate of γ = 1·59 ± 0·184 (standard error).
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For the LBN method (Fig. 2b), μ was generally underestimated,
with 83% of the estimates below the true value of μ = 2 (Table 1).
There was also a large spread of estimated values. Thus, although
the mean of the μ estimates was 1·90, which is only 5% below the
true value, this method still performed poorly and is severely biased.

Sims et al. (2007) stated that the imposition of a maximum move-
ment length in their simulated data introduced a slight bias for all
methods. However, no maximum movement length was imposed
here, and the LBN method is still biased.

The RF method performed better (Fig. 2c), with a narrow spread
of estimates around a mean of 1·986 (Table 1). However, 62% of
values still fell below the true value of μ = 2.

The MLE method had an even narrower spread of estimated
values (Fig. 2d), around a mean of 2·001 (Table 1). And 49·9% of
estimates fell below the true value, and 50·1% above. Thus, the MLE
method here yielded an unbiased estimate for μ, and also has the

minimum spread of the four estimation techniques. The MLE
method clearly outperforms the others.

Furthermore, 95% confidence intervals were obtained for the
MLE of μ using the likelihood profile method (Hilborn & Mangel
1997). Of the 10 000 simulations, 95·06% of the 95% confidence
intervals contained the true value of μ = 2. Thus, the 95% confidence
intervals were also accurate.

Goldstein et al. (2004) also used an MLE method for their
aforementioned discrete Pareto distribution, although for the
discrete distribution an analytical solution equivalent to (5) cannot
be found. They found the true power-law exponent of γ = 2·5 to be
estimated as γ = 2·500 ± 0·017 (SD), also showing excellent accuracy.

The results presented in Fig. 1 suggested that the LBN, RF and
MLE methods gave estimates of similar accuracy. But the results of
Table 1 and Fig. 2 show that this was a particular characteristic of
the specific simulated data set of 1000 numbers in Fig. 1.

Fig. 2. Histograms of estimates for μ from
10 000 simulated data sets, each data set
containing 1000 independent random
numbers drawn from the power law (3) that
has known μ = 2. The true value of μ = 2 is
shown as a thick vertical line. Results are for
the four methods: (a) LT, (b) LBN, (c) RF and
(d) MLE. Note the change in vertical scales
between (a), (b) and (c), (d). Summary
statistics are shown in Table 1. The MLE
method clearly gives the best estimates for μ,
given the true value μ = 2.

Table 1. Statistics for the 10 000 simulations
with known value μ = 2 for each of the four
methods, as shown in Fig. 2. Results are given
to two or three decimal places as appropriate
depending on closeness of the mean and
median to 2

Method 1st quartile Median Mean 3rd quartile

Percentage of 
estimates below 
true value of μ = 2

LT 1·14 1·25 1·24 1·35 100·00%
LBN 1·84 1·91 1·90 1·98 82·62%
RF 1·956 1·986 1·986 2·017 61·87%
MLE 1·979 2·000 2·001 2·022 49·91%
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SENSIT IV ITY TO EXPONENT μ  AND SAMPLE SIZE n

Just as the results of Fig. 1 were shown to be dependent on the
particular simulated data sets of 1000 random numbers, the results
of Table 1 and Fig. 2 may be dependent on the particular values of
μ = 2 and n = 1000. So we repeated the above analyses for a range of
μ and n values.

Figure 3 shows the dependence of the results on the prescribed
values of μ and n, one diagram for each method. Results are shown
for five values of μ: 1·5, 2, 2·5, 3 and 3·5. In the Supplementary
material, results for further values of μ are shown.

For clarity of explanation (as the results are the best and so the
diagram is easiest to interpret), first consider Fig. 3d for the MLE
method. The five μ values tested are indicated by the five horizontal
grey lines. Eight sample sizes, n, were used: 25, 50, 100, 250, 500,
1000, 2500 and 5000 – a sample size of only 25 was the case for the
high-food bumblebee data set analysed by Viswanathan et al. (1999).
These eight sample sizes are indicated by the values shown on the
logarithmic x-axis.

Thus, there are 40 combinations of μ and n values. For a given
combination, n random numbers were sampled from the power law
with exponent μ, and the MLE method used to then estimate μ from
the generated data (assuming a = 1 to be known). This was repeated
10 000 times, yielding 10 000 estimates of μ for the given combina-
tion of μ and n. At the corresponding value of n, the mean value of
the 10 000 estimates of μ was then plotted as a black circle in Fig. 3d.
A vertical bar was then added, to indicate the range within which
95% of the estimated μ values fell (the endpoints of the bars
represent the 2·75% and 97·25% quantiles). For each sample size n,
this was then repeated for each of the other values of μ. For visual
clarity (to stop the bars overlapping each other), the circles and bars
are slightly horizontally offset from the precise n value, with the

left-most (or bottom) circle representing a true value of μ = 1·5, the
second-from-left circle representing μ = 2, etc. Thus, there are eight
values of n, and each uses five values for μ, yielding 40 combinations
in all giving 40 black circles and vertical bars (although the circle for
n = 25 with μ = 3·5 lies just outside of the plotted range).

The previous results in Fig. 2d showed that the MLE method was
accurate for μ = 2, n = 1000. This can be seen in Fig. 3d at n = 1000,
by the second black dot from the bottom. The black dot represents
the mean of the 10 000 simulations, and clearly lies on the horizontal
line at μ = 2. And the shortness of the vertical bar indicates that
95% of the estimated μ values indeed lie close the true value of
μ = 2.

It can be seen that as sample size n is increased, the MLE value
remains unbiased (the black circles remain on the horizontal μ = 2
line), and the 95% range of estimates becomes narrower. This is
expected – a larger sample size yields a more accurate estimate for μ.
As n decreases, the 95% range becomes larger (as expected), and the
mean estimate for μ becomes slightly positively biased. This general
result is seen across all values of μ.

The same 400 000 simulated data sets from Fig. 3d were also used
to estimate μ by each of the other three methods (there were 10 000
data sets for each of the 40 combinations of μ and n). The next most
accurate method is the RF method shown in Fig. 3c. The mean
estimates (black circles) are not as accurate as for the MLE method.
Even at large sample sizes n, the higher μ values are slightly
underestimated. For sample sizes n = 25 and 50, the estimates when
μ = 3·5 (the highest black circle for each value of n) are close to
μ = 3·25. Across all combinations of μ and n, the 95% ranges are
larger than those for the MLE method (as was suggested in Figs 2c
and d for μ = 2 with n = 1000).

The LBN method (Fig. 3b) underestimates the true value of μ
across the full ranges of μ and n. The underestimation originally

Fig. 3. Further simulations similar to Fig. 2
for different combinations of μ and n, using
each method: (a) LT, (b) LBN, (c) RF and (d)
MLE. Horizontal grey lines represent the
known μ values used (namely 1·5, 2, 2·5, 3
and 3·5), and the tick marks on the
logarithmic x-axis indicate the sample sizes n.
For a given combination of μ and n, n random
numbers were sampled from the power law of
exponent μ, and μ was estimated from the n
random numbers. This was repeated 10 000
times (as in Fig. 2 for n = 1000, μ = 2), with
the mean of the 10 000 estimates indicated by
a black solid circle on the diagram for the
method used. The vertical bars indicate the
range within which lay 95% of the estimated
values. Thus, there is one black circle with a
vertical line for each of the 40 combinations
of μ and n (for clarity, circles and lines are
offset slightly from their prescribed value of
n). For illustration, the arrows indicate the
mean value of μ estimated by each method for
n = 1000 and a true μ = 3·5. Only for the MLE
method does the circle lie on the μ = 3·5 grey
line. Overall, the MLE method is clearly best.
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shown in Fig. 2b and Table 1, for μ = 2 and n = 1000, is not markedly
improved with an increase in sample size.

For the LT method (Fig. 3a), the estimated μ values are so poor
(as expected from Fig. 2a), that most of the black circles lie a long
way from the corresponding horizontal line that represents the
true μ value that the circles should be estimating. This is true
even for large sample sizes. The LT method should clearly never
be used.

The inaccurate methods directly impact the biological conclu-
sions. For the LBN method and non-Lévy value of μ = 3·5 (top
circle for each value of n in Fig. 3b), the 95% range overlaps the
Lévy range μ ≤ 3, even for n = 5000. And for the borderline value of
μ = 3, the estimated μ value, and a large majority of the 95% range,
lie in the Lévy range μ ≤ 3. The LBN method therefore biases the
estimate of μ towards the Lévy range.

Thus, the LBN method, the preferred method of Sims et al.
(2007), will often falsely classify data generated from a non-Lévy
power law (μ > 3) as being a Lévy flight (1 < μ ≤ 3). Therefore, an
organism whose movelengths really come from a pdf with a non-
Lévy power-law tail with μ > 3, can be incorrectly identified by the
LBN method as undergoing Lévy flights.

This problem is clearly more pronounced for the LT method in
Fig. 3a. For a sample size of n = 5000, and μ = 3 or 3·5, the entire
95% range of estimated μ values lies within the Lévy range. For the
RF method, with μ = 3·5 the 95% range reaches well into the Lévy
range (μ ≤ 3) for the smaller sample sizes.

The downward biasing of estimates of μ from the LT and LBN
methods also means that estimated values of μ that come from
power laws for which the true μ > 2, will be biased towards the
theoretically optimal value μ = 2. Thus, the empirical evidence for μ
values close to 2 may actually be a consequence of biasing due to
the methods. Alternatively, for a true value of μ = 2 the inferred
reported value will generally be < 1·5 for the LT method and < 2 for
the LBN method. But given that many reported values are close to
2, it seems that the overall consequence of the downward biasing
will have been to exaggerate reports of the number of data sets with
μ � 2 (if indeed the data are from power laws).

Empirical re-analysis

The above analysis was concerned with correctly estimating
the power-law exponent μ. But this does not tell us if  the
power law is a good description of the data in the first place.
Here we apply modern methods of model selection (Burnham
& Anderson 2002) to an empirical data set.

Austin et al. (2004) used a variety of techniques to analyse
movement data that they had collected concerning grey seals
[Halichoerus grypus (Fabricius, 1791)]. The seals were fitted
with satellite-relay data loggers when they were on Sable
Island, a vegetated sand bar 300 km from the coast of Nova
Scotia, Canada. A total of 15 333 useable locations from 52
seals were obtained – this gives an example of the aforemen-
tioned huge data sets that are emerging from animal moni-
toring studies, and demonstrates the need for mathematical
and statistical tools to analyse such data.

As a small part of their study, Austin et al. (2004) tested
data for individual seals to see if  the seals might exhibit Lévy
flights. Following the example of Viswanathan et al. (1999),
Austin et al. (2004) analysed their data using the LT method.
Only 9 of the 27 daily sampled seals appeared to fit the Lévy

flight model. In particular, for their seal 6118, Austin et al.
(2004) concluded a Lévy flight with μ = 1·26.

Sims et al. (2007) noted that the erroneous LT method had
been used. Focussing on seal 6118, they also noted that the
relationship between log(frequency) and log(movement length)
– see Austin et al.’s Fig. 3a or Sims et al.’s Fig. 4b – is ‘not
linear, indicating the distribution of steps is unlikely to follow
a power law’. The approach described by Edwards et al.
(2007) provides a more formal way to judge quantitatively
whether the data do indeed follow a power law or not, by
comparing the strength of evidence for the power law with the
evidence for other distributions.

Sims et al. (2007) digitized the data from Austin et al.’s
Fig. 3a and re-analysed the data using the LBN method,
obtaining μ = 0·80. They found that their re-analysis ‘provides
no evidence for the presence of Lévy flights in the data (e.g.
μ < 1) and confirms the absence of a power-law distribution.’

Here, we also present a re-analysis of the data for seal 6118,
by first using the binned form of the data that was shown in
Fig. 3a of Austin et al. (2004). Thus, we used the same infor-
mation as used by Sims et al. (2007). (Actual binned values
were obtained from D. Austin, as were the raw unbinned data
values that are analysed later). We tested the evidence for four
models – PL, the standard Lévy flight model of a power-law
distribution over the range [a, ∞); Exp, a standard exponential
distribution over [a, ∞); PLB, a power law bounded over the
range [a, b], also known as the truncated Pareto distribution
(Johnson et al. 1994); and ExpB, an exponential distribution
bounded over the range [a, b]. These four models were tested
for the deer and bumblebee data by Edwards et al. (2007) (see
that reference for the four equations), who included the
bounded distributions because of the negligible support for the
conventional PL model. A standard exponential distribution
describes the time intervals between events of  a simple
Poisson random process (Grimmett & Stirzaker 1990), and so
represents an obvious model to test (as also mentioned by
Cole 1995). Following Austin et al. (2004), the value a = 1·5
was used for all models, and b = 15·5 used for the bounded
models because it represents the maximum value of the highest
bin in Austin et al.’s Fig. 3a.

Fig. 4. True raw data from seal 6118 (from D. Austin), with bin
breaks at 1·5, 2·5, 3·5, ... km. Move lengths < 1·5 km are not shown,
as Austin et al. (2004) considered only move lengths ≥ 1·5 km in their
analysis (only 10 moves were < 1·5 km).
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Maximum likelihood estimates for μ (PL and PLB) or λ
(Exp and ExpB) were calculated numerically, using the like-
lihood functions for binned data derived in Supplementary
methods 4 and 5 of Edwards et al. (2007). The 95% confidence
interval for each MLE was calculated using the profile
likelihood-ratio test (Hilborn & Mangel 1997).

For each model and MLE, Akaike’s information criterion
(Hilborn & Mangel 1997; Burnham & Anderson 2002; Johnson
& Omland 2004) was calculated, as was the Akaike weight
(Burnham & Anderson 2002; Edwards et al. 2007). The number
of parameters being estimated for each model (Ki in Box 1 of
Edwards et al. 2007) was one (just μ) for the unbounded PL
and Exp models, and two (μ and b) for the bounded PLB and
ExpB models.

The Akaike weight, wi, for model i is considered to be the
weight of evidence in favour of model i being the best model
for the data, out of the four models being considered. Thus,
the model with the highest weight is most supported by the
data. Here it is clearer, since we have four models, to show the
evidence ratio for each model, which is defined (Burnham &
Anderson 2002) as wbest/wi, where wbest is the Akaike weight for
the best model (highest weight). Thus, the best model has an
evidence ratio of 1, and the other models have evidence
ratios > 1.

Our re-analysis (‘Reported data’ in Table 2) finds the MLE
of μ = 1·82 (95% CI: 1·66–1·99) for the unbounded PL model,
compared to Austin et al.’s reported value of 1·26, and Sims
et al.’s LBN-computed value of 0·80. Thus, Austin et al.’s value
of 1·26, using the erroneous LT method, is actually closer to the
MLE than Sims et al.’s recalculation using the LBN method.

But for the PLB model, the MLE is μ = 0·87 (95% CI: 0·57–
1·17), which is closer to Sims et al.’s LBN-computed value.
This apparent paradox arises because the graphical LBN
method does not distinguish between bounded and
unbounded distributions (i.e. between PLB and PL). For a
bounded distribution, we assume that the data are restricted
to being less than the largest observed value (a conservative
assumption that will favour Akaike weights for a bounded
power law over a bounded exponential – see Edwards et al.
2007). For an unbounded distribution, the assumption is that
larger values are possible but were not observed in this
particular data set. For this latter case, we essentially have

counts of zero in the higher bins. But such zero counts cannot
be plotted on log-log axes and so the bounded and unbounded
cases cannot be distinguished by the LBN method.

The evidence ratios show that the ExpB model is most
supported by the data, and is fairly convincingly supported
over the next best model (PLB). The unbounded PL and Exp
models are not supported at all, with the PL model by far the
worst model of the four.

As Goldstein et al. (2004) noted, ‘the parameter estimate of
a power-law exponent has very limited meaning without some
assessment of its goodness-of-fit’. A goodness-of-fit test (G-
test, or likelihood-ratio test, with Williams’s correction; Sokal
& Rohlf 1995) for the ExpB model with λ = 0·16 shows that
the reported data are indeed consistent with coming from this
model (n = 96, degrees of freedom = 7, G = 8·6, p = 0·28).

Thus, we conclude that the data do not appear to follow a
power law (either bounded or unbounded), but that the
bounded exponential model is an acceptable model.

We analysed the data as plotted in Austin et al. (2004) in
order to use the same information as Sims et al. (2007) in their
analysis. However, during the re-analysis it became apparent
that the original grey seal data were plotted incorrectly in
Fig. 3a of  Austin et al. (2004) (D. Austin, personal com-
munication). The numbers on the x-axis actually indicated
bin number, not movement length as reported. For example,
bin number 6 represents movement lengths in the range 7·5–
10·0 km rather than the range 6·5–7·5 km indicated in the
figure. Only the histograms and log–log plots in Fig. 3 of
Austin et al. (2004), and their associated calculations, are
incorrect – the rest of the figures and results are not affected
(D. Austin, personal communication).

So now we analyse the true raw data from Austin et al.
(2004) corresponding to the correct movement lengths for
seal 6118, as shown in the spatial plot of Austin et al.’s
Fig. 3b, and as a standard histogram in Fig. 4.

First, in Fig. 5a, we use the LBN method to estimate μ, thus
following Sims et al.’s preferred approach but using the true
data. Some curvature is apparent in Fig. 5a, suggesting a
straight line (i.e. a power law) may not be an excellent fit. The
slope gives a value of μ = 1·59, with a high r2 of 0·94.

Using the likelihood approach (Table 2), we find that the
LBN value of μ = 1·59 just discussed is actually very close to

Table 2. Re-analysis of movement length data of grey seal 6118. ‘Reported data’ are the data as plotted in Fig. 3a of Austin et al. (2004), for
which μ = 1·26 was calculated by Austin et al. using the LT method, and μ = 0·80 was calculated by Sims et al. (2007) using the LBN method.
‘True data’ are the corrected raw data set (see text), with the value μ = 1·59 calculated here using the LBN method. Four models were tested here
using the likelihood approach: PL (power law unbounded), Exp (exponential unbounded), PLB (power law bounded) and ExpB (exponential
bounded), and the maximum likelihood estimate (MLE) for μ or λ calculated as appropriate. Bold represents the model with the evidence ratio
of 1·0 (i.e. the model which is most supported by the data).

Data set Reported μ
PL: MLE for μ 

(95% CI)
Exp: MLE for λ 

(95% CI)
PLB: MLE for μ 

(95% CI)
ExpB: MLE for λ 

(95% CI)

Evidence ratios

PL Exp PLB ExpB

Reported 1·26, 0·80 1·82 0·22 0·87 0·16 > 1015 240 17 1·0
data (1·66, 1·99) (0·18, 0·27) (0·57, 1·17) (0·11, 0·22)

True (1·59) 1·60 0·090 1·25 0·089 > 106 2·2 1·0 5·3
data (1·49, 1·73) (0·073, 0·109) (1·07, 1·43) (0·072, 0·108)
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the MLE value of 1·60 for the unbounded PL model. However,
for the ‘Reported data’, the LBN value was close to the MLE
for the PLB model. It may not be so surprising that such
an inconsistency arises because the LBN method does not
distinguish between the PL and PLB models.

For the true data, the evidence ratios show that the PLB model
has the most support (Table 2). But it is not convincingly the
best (Burnham & Anderson 2002), because the Exp model
has an evidence ratio of only 2·2, and the ExpB model of only
5·3. Again, the standard Lévy flight (PL model) is completely
unsupported by the data. This is despite the LBN plot in
Fig. 5a giving an apparently good fit.

Figure 5b shows the true data plotted as a rank/frequency
plot, together with the curves for the four models of Table 2 as
fitted by their respective MLEs. Note that the PLB model on

the rank/frequency plot is not a straight line, demonstrating
that a straight-line fit would have no chance of working for
this model. Figure 5b shows that the PL model is clearly very
poor. The other models do not look so bad, with the PLB
model looking the best, as ascertained (but not conclusively)
by the evidence ratios.

However, the goodness-of-fit test (G-test, as above) for the
PLB model finds that the data are not consistent with this
model (n = 96, degrees of freedom = 9, G = 19·7, p = 0·020).
So, while the PLB model is indeed the best of the four models
tested, it is not a satisfactory model. Further distributions or
hypotheses would need to be considered. Hence, we conclude
that none of the four models tested are suitable for the data,
and, in particular, the grey seals are not exhibiting Lévy flight
movement patterns. The breaks in Fig. 5b suggest that no
single distribution will describe the data, and thus that more
detailed models and biological interpretation would be
required.

Discussion

Using simulated data generated from known power-law
distributions, we have tested four methods that have previously
been used to estimate the power-law exponent μ. The
MLE method is clearly superior to the other methods, and
we therefore recommend its use. It has the added benefits of
being easy to compute, without having to worry about the
binning issues that plague the LT and LBN methods, and of
providing proper construction of confidence intervals.

The LT method has been used in many studies (see Sims
et al. 2007; Edwards et al. 2007). Pueyo & Jovani (2006) and
Sims et al. (2007) showed that this method is erroneous, and
the extensive analysis here shows that it never gives the correct
answer, even for large sample sizes. In fact, it is unclear, from
a theoretical perspective, why it was ever used in the first place.
Sometimes, in other scientific areas, the bins containing the
scarce large values in the tail have been removed to improve
the estimate of  μ, but this is an ad hoc approach with no
guarantee of accuracy.

Unfortunately, the LT method has been shown here to
severely bias estimates of  μ towards the Lévy flight range
(and often towards the reportedly optimal μ = 2). The con-
sequence of such bias is that researchers have been misled as
to the biological meaning of their analyses.

The LBN method seems more warranted from a theoretical
viewpoint, yet the fact that some points represent many more
data values than other points remains problematic. The LBN
method for the true grey seal data in Fig. 5a resulted in a high
r2 of 0·94, yet it was then shown that the power law (both
unbounded and bounded) was not a suitable model for the
data. Similar r2 values have been reported elsewhere (e.g.
Bartumeus et al. 2003). But r2 is related to the amount of
variance explained by the regression line (e.g. Crawley 2002),
and is not a statistical goodness-of-fit test of the power-law
distribution.

Sims et al. (2007) did conclude by advocating the use of
likelihood methods in addition to plotting approaches. Here,

Fig. 5. (a) True move lengths from Fig. 4 analysed using the LBN
method. Bin breaks are at 1·5, 2·5, 4·5, 8·5, 16·5, 32·5, 64·5 and 128·5.
The linear regression fit to the points yields the estimate μ = 1·59. (b)
Rank/frequency plot of the true move lengths. The four models (using
their respective MLEs) from Table 2 are: PL (thick straight line), Exp
(thin curved line), PLB (dashed curve line), ExpB (thin curved line,
which overlaps almost perfectly with the Exp model). In agreement
with the evidence ratios, the PL model is a very poor model, despite
appearing to be not too bad in (a).
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we have shown that likelihood methods are the most accurate
for ascertaining power-law exponents. Regarding plotting, it
is indeed useful to plot the data in the different ways described
by Sims et al. (2007), as in Fig. 1 (and Edwards et al. 2007).
One of the reasons for the different plotting methods is that if
data do come from a power law over several orders of magnitude,
then a standard histogram (linear axes) poorly represents
the data. But we do not recommend using any subsequent
regression fits to determine the power-law exponent.

Benhamou (2007) discussed further issues concerning
Lévy flights that have not been addressed in this paper. For
example, there is the general problem of being careful about
inferring a process from a pattern. Also see Travis (2007) for
Benhamou’s and others’ thoughts concerning Lévy flights.

The MLE and Akaike weight approaches used here are
applicable to the determination of power laws in other areas
of ecology, and even other areas of science (e.g. understanding
human memory; Rhodes & Turvey 2007). White, Enquist &
Green (2008) have also recently looked at the issue of estimat-
ing power-law exponents, giving examples of power-law dis-
tributions being inferred in areas of biology as diverse as sizes
of  islands and fluctuations in metabolic rate. White et al.
(2008) tested the performance of  fitting methods on simu-
lated data (our complementary studies were performed
simultaneously but independently). Their conclusions agree
with those derived here, namely that MLE is the most accurate
method and therefore should be used. Furthermore, White
et al. (2008) looked at the effect of changing the bin sizes for
the binning methods, and tested the binning methods with
the lowest counts excluded (as is sometimes carried out).
Such refinements could slightly improve the accuracy of the
methods as reported here, although we agree with White et al.’s
comment that there are many conceivable rules that could be
applied, yet ‘no amount of tweaking’ will produce a consistent
binning method.

Beyond ecology, similar and related issues to those examined
here have been investigated previously, also leading to
recommendations to use likelihood over graphical methods
(e.g., Clark, Cox & Laslett 1999 in geology). White et al.
(2008) noted that the bias of the MLE for μ seen at small sample
sizes (see their Fig. 2a and Fig. 3d here) can be eliminated –
see Johnson et al. (1994) and Clark et al. (1999). Clauset,
Shalizi & Newman (unpublished, see http://arxiv.org/abs/
0706.1062v1) present a wide-ranging overview, including a
discussion of why the methods involving regression on log–
log plots violate the assumptions of linear regression, and give
further technical properties of  the MLE for μ (see also
Newman 2005 and Johnson et al. 1994). They also re-analysed
24 data sets using likelihood, and suggest that some power-
law behaviour might be ‘merely a figment of the researcher’s
imagination’.

Many ecological studies track animals moving vertically
(e.g. Watwood et al. 2006) or horizontally (e.g. Pinaud &
Weimerskirch 2007; Phalan et al. 2007). Manipulation
experiments are also performed (e.g. Luschi et al. 2001) to try and
reveal the navigational cues used by animals. A complicating
factor is that movement will be a consequence of an animal’s

own movement plus any drift due to, say, ocean currents (e.g.
Luschi, Hays & Papi 2003) or wind (e.g. Green et al. 2004).
Deducing the underlying rules driving animal movement will
continue to require novel quantitative approaches.

This purposefully methodological paper has shown some
of the pitfalls that can arise when analysing movement data.
Testing has shown the likelihood method to perform very
well, and Akaike weights allow for proper selection between
models, as advocated by Burnham & Anderson (2002). Robust
conclusions regarding animal movement and behaviour rely
on correctly analysing data. Such data are expensive, difficult
and time-consuming to collect. It is hoped that the work
presented here will help ecologists reach meaningful and
accurate conclusions about the animals that they study.
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