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Overturning conclusions of Lévy flight movement patterns
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Abstract. A surprisingly diverse variety of foragers have previously been concluded to
exhibit movement patterns known as Lévy flights, a special type of random walk. These
foragers range in size from microzooplankton in experiments to fishermen in the Pacific Ocean
and the North Sea. The Lévy flight conclusion implies that all the foragers have similar scale-
free movement patterns that can be described by a single dimensionless parameter, the
exponent l of a power-law (Pareto) distribution. However, the previous conclusions have been
made using methods that have since been shown to be problematic: inaccurate techniques were
used to estimate l, and the power-law distribution was usually assumed to hold without
testing any alternative hypotheses.

Therefore, I address the open question of whether the previous data still support the Lévy
flight hypothesis, and thus determine whether Lévy flights really are so ubiquitous in ecology. I
present a comprehensive reanalysis of 17 data sets from seven previous studies for which Lévy
flight behavior had been concluded, covering marine, terrestrial, and experimental systems
from four continents. I use the modern likelihood and Akaike weights approach to test
whether simple alternative models are more supported by the data than Lévy flights.

The previously estimated values of the power-law exponent l do not match those
calculated here using the accurate likelihood approach, and almost all of them lie outside of
the likelihood-based 95% confidence intervals. Furthermore, the original power-law Lévy
flight model is overwhelmingly rejected for 16 out of the 17 data sets when tested against three
other simple models. For one data set, the data are consistent with coming from a bounded
power-law distribution (a truncated Lévy flight). For three other data sets, an exponential
distribution corresponding to a simple Poisson process is suitable. Thus, Lévy flight movement
patterns are not the common phenomena that was once thought, and are not suitable for use
as ecosystem indicators for fisheries management, as has been proposed.

Key words: AIC; fisheries management; Lévy flight; likelihood; movement patterns; optimal foraging
strategy; power laws; random walk.

INTRODUCTION

It is appealing to try to deduce a wide-ranging yet

simple theory to explain the search behavior of a variety

of organisms. Over the past decade, an increasingly

popular way to analyze animal movement data is in the

context of Lévy flights. A Lévy flight is a random walk

for which each movement step is independently drawn

from a probability distribution that has a heavy power-

law tail (ben-Avraham and Havlin 2000). The power-

law tail means that occasionally there will be a very large

step. The resulting pattern is of clusters of short steps

that are connected by the rare long steps. For example,

Plank and Codling (2009) show the typical two-

dimensional case, which assumes random angles be-

tween steps. A suggested application of Lévy flight

movements of fishing boats is as an indicator of fish

vulnerability, perhaps to serve as a warning signal for

fisheries management (Bertrand et al. 2007).

Viswanathan et al. (1996, 1999) presented evidence of

Lévy flight movement patterns by Wandering Alba-

trosses, bumble bees, and deer. Then followed many

similar conclusions, such as those concerning the

movements of Peruvian purse-seiner fishing boats

(Bertrand et al. 2007), Dutch beam-trawler fishing boats

(Marchal et al. 2007), microzooplankton (dinoflagel-

lates) in experiments (Bartumeus et al. 2003), gray seals

in the North Atlantic Ocean (Austin et al. 2004),

reindeer in Sweden (Mårell et al. 2002), side-striped

jackals in Zimbabwe (Atkinson et al. 2002), and Dobe

Ju/’hoansi human hunter-gatherers in Botswana and

Namibia (Brown et al. 2007). For all except the gray

seals and reindeer, the Lévy flight conclusion was the

main focus of the original paper.

Motivation for such studies came from the claim that,

under certain conditions, a Lévy flight with an exponent

of two represents an optimal foraging strategy (Viswa-

nathan et al. 1999). Furthermore, the Lévy flight model

is a simple alternative to Brownian motion, and showing
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that movements could not simply be described as

Brownian motion was a useful step forward (Anders

Mårell, personal communication).

However, the influential empirical conclusions of the

first two studies (Viswanathan et al. 1996, 1999) have

since been overturned (Edwards et al. 2007); data were

originally misinterpreted, and inaccurate methods were

originally used. Similar methods were subsequently

adopted for the later studies, but such methods have

since been shown to be inaccurate and problematic

(Edwards et al. 2007, Sims et al. 2007, Edwards 2008,

White et al. 2008). This raises the question of whether

these studies do, in fact, provide evidence for Lévy

flights in ecology, and thus motivates the present work,

which reanalyzes 17 data sets from the seven studies just

cited.

The inaccurate methods in question involve the

estimation of the dimensionless parameter l, which is

the exponent of the power-law probability density

function (explicitly given in Eq. 1). Sims et al. (2007)

showed that one of the methods, simple log-transfor-

mation (LT) of a histogram, is inaccurate; they

recommended the log-binning with normalization

(LBN) method. White et al. (2008) and Edwards

(2008) then showed that this method is also inaccurate,

and that likelihood correctly determines l from simu-

lated data. See those references for full descriptions of

the methods.

The other problems with the original approaches were

the lack of proper testing of alternative hypotheses and

the lack of testing of goodness of fit. A power-law

distribution was usually assumed, and the parameter l
estimated, without consideration of possible alternatives

(see Edwards et al. 2007). Therefore, I reanalyze the

original data sets using likelihood and calculate Akaike

weights to test alternative models. I also test goodness of

fit to check if the best model of those tested is actually a

suitable model for the data (some authors had reported

r2 values related to regression methods, but these are not

statistical goodness-of-fit tests; see Edwards 2008).

METHODS

A brief summary of the data sets from each previous

study is given in Table 1. The data collection methods

used were somewhat varied across studies, as necessi-

tated by the diverse nature of the organisms being

studied. Table 1 demonstrates that the working defini-

tion of ‘‘movement length’’ also varies between studies

(e.g., the distance moved in a straight line for Peruvian

fishing boats, compared to distance moved in a day for

gray seals). Thus the Lévy flight hypothesis was being

tested for different types of data, and, consequently, the

hypotheses really being tested were somewhat different

than the original concept of Viswanathan et al. (1996) of

power-law-distributed movements between feeding

events.

The approach here was to reanalyze the specific data

sets from each previous study that had been explicitly

shown in a figure to be a power law. Typically, a

regression based on the figure (some sort of histogram

on log–log axes) was originally used to determine l. This
was done using the LT or LBN methods (based on

Viswanathan et al. 1996, 1999) that have now been

shown to be inaccurate, as noted above.

An unbounded power-law model (PL model) is what

was concluded in each of the previous studies. Here, I

tested it against the simplest alternative of an exponen-

tial model, which naturally arises as the distribution of

intervals between events of a simple Poisson random

process (Grimmett and Stirzaker 1990, Brown et al.

2007). The bounded versions of these models were also

tested, due to the lack of support for the unbounded

TABLE 1. Summary of data sets reanalyzed for Lévy flight conclusions.

Foragers Data collection method Movement length (units) Reported conclusion

Peruvian fishermen hourly GPS locations distance moved in a straight line,
turning ,108 (nautical miles)

all 691 vessels had 1 , l , 3,
with mean l ¼ 2.00

Dutch fishermen satellite vessel monitoring
system

distance moved between hauls
in month (nautical miles)

mainly 1.0 , l , 1.9

Microzooplankton controlled experiments time spent between tumbles
of .1008 (s)

flight times switched from
exponential to Lévy as prey
decreased

Gray seals Argos satellite locations distance moved per day (km) 9 out of 27 daily sampled seals fit
Lévy flight

Reindeer laser range-finding
binoculars

distance moved between
30-s observations (m)

Lévy flights for all three time
periods

Side-striped jackals radio-tracked from
vehicle

distance traveled in 10 min
(100s of meters)

all 7 jackals were Lévy, l ¼ 2.02
6 0.30

Human
hunter-gatherers

measured from
a map

distance moved between
successive camps (km)

Lévy flight with l ¼ 1.97

Notes: Definitions of movement length or step used in each original analysis are given, followed by the units of measurement (1
nautical mile ¼ 1.852 km). Reported conclusions summarize the Lévy flight aspect of each study, where l is the power-law
exponent, 1 , l � 3 corresponds to a Lévy flight, and l¼ 2 represents an optimal foraging strategy under certain conditions. See
original sources for further details of data analysis, data filtering, and conclusions.
Sources: Peruvian fishermen, Bertrand et al. (2007); Dutch fishermen, Marchal et al. (2007); microzooplankton, Bartumeus et al.

(2003); gray seals, Austin et al. (2004); reindeer, Mårell et al. (2002); side-striped jackals, Atkinson et al. (2002); human hunter-
gatherers, Brown et al. (2007).
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power-law model in previous work (Edwards et al.

2007).

The likelihood and Akaike weights approach outlined

in Edwards et al. (2007) and Edwards (2008) was used.

The four models and corresponding probability density

functions f (x) for movements of length x, are: the classic

Lévy flight model of an unbounded power-law tail (PL

model)

f ðxÞ ¼ Cx�l x � a ð1Þ

with normalization constant C ¼ (l � 1)al�1; the

simplest alternative of an unbounded exponential tail

(Exp)

f ðxÞ ¼ ke�kðx�aÞ x � a; ð2Þ

a bounded power law (PLB)

f ðxÞ ¼ Cx�l x 2 ½a; b� ð3Þ

with normalization constant given by C¼ (l� 1)/(a1�l�
b1–l) for l 6¼ 1 and C ¼ 1/(log b � log a) for l ¼ 1 (see

Appendix); and a bounded exponential distribution

(ExpB)

f ðxÞ ¼ Ae�k x x 2 ½a; b� ð4Þ

with normalization constant A ¼ k/(e�ka � e–kb).

Parameter a is the start of the tail of the data, and b is

the maximum allowable value of the data for the

bounded models.

The Lévy flight hypothesis is that the distribution of

movements has a power-law tail with 1 , l � 3. This is

the PL model, where the hypothesis is not directly

concerned with data ,a.

Clearly, movement lengths (and other data) naturally

have some maximum value. While more familiar

distributions (such as the Gaussian) are widely used in

ecology in their unbounded form, this is because they

decay away fast enough that unrealistically large values

are extremely unlikely (there is no need to bound a

Gaussian distribution to avoid large values). But power

laws, by definition, can decay away slowly enough to

produce huge values, and so would seem to require an

explicit upper bound to be logically reasonable (e.g.,

Page [1968] used the PLB model in the context of

earthquakes). Note that the PL and PLB models are also

called the Pareto and truncated Pareto distributions (see

White et al. 2008 and references therein).

The value of a generally has not been explicitly

stated, so for each data set tested here, I determined a

from what was implied by the corresponding log–log

plots in the original papers. This may be the minimum

of the full data set. Or if the lowest point of an LT or

LBN plot had been excluded in the computation of l
(as in Edwards et al. 2007: Fig. 4), then I set a to be the

minimum value of the lowest bin that was included.

Thus for each data set I am explicitly testing the model

that was implied in the original paper, that of a power-

law tail for data greater than a. The value of b was

taken to be the maximum value of the data, rounded up

to the nearest integer. Values of a and b are given in the

Appendix: Table A2.

For each data set, the appropriate maximum likeli-

hood estimate (MLE) of l or k was calculated for each

model, together with 95% confidence intervals obtained

using the profile likelihood-ratio test (Hilborn and

Mangel 1997). Akaike weights were computed, where

the Akaike weight for a particular model is considered

to be the weight of evidence in favor of that model being

the best model for that data set, out of the models being

tested (Burnham and Anderson 2002). The results are

presented in terms of evidence ratios, calculated for a

particular data set by dividing each Akaike weight by

the highest Akaike weight (Burnham and Anderson

2002), such that the best model has an evidence ratio of

1.0, and the other models have evidence ratios .1.0. For

further background to the approach see Burnham and

Anderson (2002) and Johnson and Omland (2004), and

for further specifics to the current analyses see Edwards

et al. (2007), Edwards (2008), and the Appendix, which

includes derivations of the likelihood functions for the

PLB and ExpB models, and for all models when only

prebinned data are available.

Goodness-of-fit tests were performed on the distribu-

tion that has evidence ratio 1.0, to ask whether the data

are, in fact, consistent with the best model. The best

model might simply be the best out of four poor models,

and thus may be far from suitable. Previously, the

unbounded power-law distribution was generally fitted

and plotted, without consideration of other models or

goodness of fit. The G test (likelihood ratio test) with

Williams’s correction was used (Sokal and Rohlf 1995),

for which the null hypothesis is that the data are

consistent with the tested distribution. Therefore if P .

0.05, the null hypothesis is not rejected, and the data are

considered to be consistent (at the 0.05 level) with the

distribution. See the Appendix for full details.

Where possible, raw data were obtained from the

original authors of each study, as now described. For the

Peruvian fishing boats, data were analyzed for the three

boats shown in Bertrand et al. (2007: Fig. 1d–f ); data

courtesy S. Bertrand ( personal communication). For

each boat, Bertrand et al. (2007) excluded the data in the

first bin, and so a for each boat was set to the lower

bound of the second bin.

For the Dutch fishing boats, the original raw data for

large Dutch beam-trawlers were obtained from P.

Marchal ( personal communication). I would have used

the data set for the example specifically shown in

Marchal et al. (2007: Fig. 4a), but it was not available.

So I analyzed data for the two months that contained

the most move lengths, where the move lengths are

distances moved between hauls (specifically, May 2001

and July 2003; the full time series of calculated l values

is shown in Marchal et al. [2007: Fig. 5]).

For the microzooplankton, the raw data were not

available. The values plotted in Bartumeus et al. (2003:

Fig. 4) were obtained from F. Bartumeus ( personal
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communication). These data are log10 of the frequency

density in each bin plotted against log10 of the geometric

midpoint of each bin. Knowing that bins progressively

doubled in size and that the geometric midpoints were

equally spaced on a log10 scale, I calculated what the

original bin breaks must have been and derived the

appropriate likelihood functions for data binned in such

a way, similar to Edwards et al. (2007); see the

Appendix. The four situations for which power laws

were concluded were reanalyzed here: namely experi-

ment A with medium food (Am), experiment B with

medium food (Bm), experiment A with low food (Al),

and experiment B with low food (Bl).

The gray seal (Halichoerus grypus) data analyzed were

for the three seals (numbered 6118, 6124, and 6125)

whose movements were plotted in Austin et al. (2004:

FIG. 1. Raw movement data were available for 12 of the 17 data sets and are shown as standard histograms. The 12 data sets
are from three Peruvian fishing boats, Dutch fishing boats in two seasons, three individual seals, reindeer from three time periods,
and human hunter-gatherers. Gray-shaded bars indicate data ,a for each data set, where a was considered in each original study to
be the start of the power-law tail (values of a are given in the Appendix: Table A 2). Table 1 gives definitions of movement length
and corresponding units, which differ for each type of data set.
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Fig. 3). As outlined in Edwards (2008), where data for

seal 6118 were reanalyzed, the data were incorrectly

plotted in those figures, so here I use the true raw data,

courtesy of D. Austin ( personal communication).

Mårell et al. (2002: Fig. 2) show three data sets of

reindeer (Rangifer tarandus) movements. These are

movements of female reindeer grouped into three time

periods, denoted A (end of May to mid-June), BC (mid-

June to end of July), and E (mid-August to mid-

September), and are reanalyzed here. Original raw data

were provided by A. Mårell ( personal communication).

Atkinson et al. (2002) analyzed movements of side-

striped jackals (Canis adustus), and stated that ‘‘The

distribution of step lengths (Fig. 2) does not fit a

Gaussian distribution... .’’ However, their Fig. 2, in fact,

does not show such a distribution of step lengths, and

the raw data are no longer available (C. Rhodes,

personal communication). Atkinson (1997: Fig. 2) gives

a histogram of step lengths for jackal F4, so I use that

data set in the analysis here (actual counts in each bin

were given in the figure). Because the data are only

available in binned form, I use the likelihood functions

FIG. 1. Continued.

June 2011 1251LÉVY FLIGHT REANALYSES



for prebinned data derived in the supplementary

information of Edwards et al. (2007).

For the hunter-gatherers, the data were taken directly

from Brown et al. (2007: Table 1). In that study,

alternative distributions were considered (including an

exponential), and the power law was concluded to be

superior. However, the exponential distribution was
incorrectly analyzed (see Appendix ).

Computations were performed using the statistical

software R (R Development Core Team 2009), versions

2.2.0 onward. In particular, the function nlm() was used

for numerical optimization of analytically intractable

likelihood functions.

RESULTS

Fig. 1 shows standard histograms for the 12 data sets

for which there are raw (unbinned) data. There is

substantial variability between individuals of the same

type, demonstrated by the fact that, except for the Dutch
fishing boats, different axes ranges were needed between

individuals of the same type to adequately display the

data.

For each individual data set, the power-law tail was

assumed in the original study to start at the value of a,

which is at the right-hand end of the shaded bar (values

of a are given in the Appendix: Table A2), or at the

minimum data value if all data were originally fitted to.
For every organism (except the Dutch boats) for which

multiple data sets were investigated, a differs between

individuals. Thus, the original studies were fitting

power-law tails, yet the definition of tail varied between

individuals.

An initial conclusion from Fig. 1 is that no data set

spans several orders of magnitude. In fact, the ratios b/a

range from roughly 8 to 200. Over half of the data sets

have ratios � 32, such that the largest value is at most

only 32 times the smallest (a). Simulated data from a

pure power-law distribution with l¼ 2 will be expected

to have 1% of values larger than 100a (e.g., Edwards

2008: Fig. 1d), and such values will sometimes be huge.

Thus, simply looking at the ranges of the data sets (and

those of Viswanathan et al. 1996, 1999), the tails do not

seem ‘‘heavy’’ enough to be pure power laws. Appendix:

Fig. A2 reproduces the original binned figures for the

four microzooplankton data sets, for which standard

unlogged histograms cannot be plotted.

Table 2 lists the l values reported for the PL model in

the previous studies. These all lie within the Lévy range

of 1 , l � 3, and were previously calculated using

regression-based methods (LT, LBN, or, for the hunter-

gatherers, a multi-histogram approach). The next

column of Table 2 gives the MLE for l calculated here,

together with its 95% confidence interval. Remarkably,

for 12 out of the 14 data sets, the previously reported l
lies outside of the 95% CI, demonstrating the unreli-

ability of the original approaches. (The 14 data sets

exclude the gray seals, whose reported values were

originally incorrectly determined.) Such unreliability of

the methods has been clearly demonstrated using

simulated data (Edwards 2008, White et al. 2008),

whereas the MLE was shown to accurately estimate l.
For the PLB model (Table 2), the MLE for l is always

lower than that for the PL model. This is to be expected,

TABLE 2. Likelihood calculations of the Lévy exponent l for the 17 data sets.

Data set Reported l PL: MLE for l PLB: MLE for l

Peru boat 1d 1.43 1.72 (1.68–1.76) 1.60 (1.56–1.65)
Peru boat 1e 2.00 1.59 (1.58–1.61) 1.45 (1.43–1.48)
Peru boat 1f 2.43 1.79 (1.74–1.85) 1.46 (1.38–1.53)
Dutch boats, May 2001 1.60 1.41 (1.37–1.45) 1.07 (1.00–1.13)
Dutch boats, July 2003 1.65 1.53 (1.48–1.59) 1.15 (1.06–1.24)
Microzooplankton Am 2.1 1.89 (1.82–1.96) 1.82 (1.74–1.90)
Microzooplankton Al 2.1 1.74 (1.70–1.77) 1.62 (1.58–1.66)
Microzooplankton Bm 2.2 2.03 (1.93–2.14) 1.86 (1.74–1.99)
Microzooplankton Bl 2.2 2.03 (1.94–2.13) 1.86 (1.75–1.97)
Gray seal 6118 1.26 1.60 (1.49–1.73) 1.25 (1.07–1.43)
Gray seal 6124 1.12 1.93 (1.73–2.16) 1.21 (0.86–1.56)
Gray seal 6125 1.30 2.04 (1.80–2.32) 1.55 (1.20–1.92)
Reindeer A 2.0 1.91 (1.81–2.02) 1.73 (1.61–1.86)
Reindeer BC 1.8 1.95 (1.82–2.09) 1.64 (1.47–1.82)
Reindeer E 1.8 2.68 (2.36–3.05) 2.41 (2.01–2.84)
Jackal F4 2.02 2.79 (2.60–3.00) 2.71 (2.51–2.93)
Hunter-gatherers 1.97 1.93 (1.66–2.26) 1.20 (0.73–1.69)

Notes: For each data set, the previously reported l is given, followed by the maximum likelihood
estimate (MLE) and 95% confidence interval of l for the PL (power law unbounded) and PLB
(power law bounded) models. Corresponding estimates of k for the Exp (exponential unbounded)
and ExpB (exponential bounded) models are deferred to the Appendix: Table A1. Boldface
indicates the model with the most support as determined by the evidence ratios of 1.0 in Table 3; if
no bold is shown here for a data set, then one of the exponential models was most supported. For
gray seals, reported l values are those originally incorrectly calculated by Austin et al. (2004; see
Edwards 2008), but the results here are for the true raw data. For the Dutch boats, reported values
are calculated using the LT method as used by Marchal et al. (2007). For jackal F4, a value of l
was not given in Atkinson (1997), although l¼ 2.02 6 0.30 (SD) was reported by Atkinson et al.
(2002) for seven animals, so I have reported l¼ 2.02 here.
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because for the region .b, the tail in the PL model must

decay away (because there are no data in this region to

support a heavier tail), but this region is excluded in the

PLB model, thus permitting a shallower (lower l)
probability density function. The MLEs of k for the

Exp and ExpB models are deferred to the Appendix:

Table A1.

Table 3 gives the evidence ratios for the four models

for each data set. An evidence ratio of 1.0 occurs for the

model that is most supported by the data, highlighted in

boldface.

The PL model is not the best model for any of the

data sets. The evidence ratio for the PL model is �107
for over half of the data sets, and .2000 for all but one

data set. Yet the PL model had previously been

concluded for each data set. Only for the jackal data

set does the PL model have any support.

The Exp model is most supported for eight of the data

sets, although in each case the evidence ratio for the

ExpB model is ,3, such that the ExpB model cannot be

ruled out. For the May 2001 Dutch boats data and three

of the microzooplankton data sets, the evidence ratio for

ExpB takes the value 2.7 ’ e, which essentially means

that the likelihoods for the Exp and ExpB models are

the same, but the ExpB model gets penalized because of

the extra parameter. For the other four data sets, the

ExpB evidence ratio is ,2.7, such that the extra

parameter b does increase the likelihood of the ExpB

model.

The PLB model is also most supported for eight of the

data sets, overwhelmingly in five cases. The ExpB model

is most supported only for the hunter-gatherers,

although for that data set, the Exp and PLB evidence

ratios are both very close to 1.0, such that the data are

not sufficient to distinguish a best model.

The fact that the PLB model was supported for eight

of the data sets implies that such a power-law model,

albeit not the originally concluded PL model, may still

be suitable. Thus, such a truncated Lévy flight might be

a good model. However, the goodness-of-fit tests suggest

otherwise. The P values in Table 3 are P � 10�5 for the

data for Peru boats 1d and 1e, microzooplankton Am,

and reindeer A and BC, and P � 0.02 for gray seal 6118

and the jackal. Thus, none of these data sets are

consistent (at the 0.05 level) with the PLB model, despite

the PLB model being the best of the four tested.

Therefore, none of the models are suitable descriptions

for these data sets. The only data set for which the PLB

model is most supported and the data are consistent

with the PLB model (from the goodness-of-fit test) is

gray seal 6124 (P ¼ 0.84). I also used an alternative

procedure for determining bins for the goodness-of-fit

tests to ensure that the general rejection of the PLB

model was not a consequence of the binning procedure;

however, the conclusions remain unchanged (see Ap-

pendix).

The jackal data set was the only one for which the

classic PL model had some support, with an evidence

ratio of 4.0 compared to the PLB model. However, the

data are not consistent with the PLB model (P¼ 0.008).

Table 3 shows that the Exp model is only deemed to

be consistent with the data for three out of the eight data

sets for which it was the most supported model, namely

the Dutch boats in May 2001, gray seal 6125, and

reindeer E. Thus the Exp model is a suitable model for

these data sets. Finally, for the hunter-gatherers, the

ExpB model is the most supported model (although only

marginally), and is consistent with the data.

Fig. 2 shows the raw data and model fits on a rank/

frequency plot with logarithmic axes. Such plots of the

TABLE 3. Evidence ratios and goodness-of-fit results.

Data set

Evidence ratios Goodness of fit for best model

PL Exp PLB ExpB n P

Peru boat 1d 1020 10306 1.0 10306 1224 0
Peru boat 1e 1092 10201 1.0 10201 3498 0
Peru boat 1f 1083 1.0 1041 1.8 824 10�11

Dutch boats, May 2001 1082 1.0 1042 2.7 364 0.64
Dutch boats, July 2003 1033 1.0 8100 1.9 329 10�5

Microzooplankton Am 105 1032 1.0 1032 641 10�8

Microzooplankton Al 1057 1.0 1030 2.7 1743 0
Microzooplankton Bm 107 1.0 220 2.7 374 10�4

Microzooplankton Bl 1014 1.0 107 2.7 471 0.001
Gray seal 6118 106 2.2 1.0 5.3 96 0.016
Gray seal 6124 106 200 1.0 27 71 0.84
Gray seal 6125 3500 1.0 2.5 1.7 63 0.74
Reindeer A 105 109 1.0 109 284 10�10

Reindeer BC 107 104 1.0 105 193 10�5

Reindeer E 104 1.0 990 2.6 89 0.93
Jackal F4 4.0 910 1.0 2500 414 0.0081
Hunter-gatherers 2200 1.05 1.3 1.0 37 0.15

Notes: Evidence ratios give the relative degree of support for each model, with 1.0 being the most supported (shown in boldface).
Sample size is n, and P is the value for the goodness-of-fit tests (G test with Williams’ correction; Sokal and Rohlf 1995) for the
model with evidence ratio 1.0 (degrees of freedom and G values are given in the Appendix: Table A2). If P . 0.05, then the data are
considered to be consistent with the tested distribution.
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data are often used in power-law studies, because if data

do come from an unbounded power law, then they will

appear straight due to the logarithmic axes (with a slight

curvature in the tail, e.g., Edwards 2008: Fig. 1d). As can

be seen from the data points and the fits of the PL model

(solid blue lines), none of the data sets actually appear

that straight. This agrees with the lack of support for the

PL model concluded from the Akaike weights. The lack

of suitably heavy-tailed data is also evident in the

Appendix: Fig. A1, which shows the same plots as Fig. 2

but on non-logarithmic axes.

The gray circles in Fig. 2 show the data values ,a for

each data set. Recall that a is set to the value used in

each original study. As can be seen, for some data sets

FIG. 2. Rank/frequency plots of data and model fits on logarithmic axes, using the data sets depicted in Fig. 1. Black circles are
values �a for each data set; gray circles are values ,a (models are only fitted for values �a, as for the original studies, which each
considered a to be the start of the power-law tail). The four model fits are PL (power law; blue straight line), Exp (exponential
unbounded; red curved line), PLB (power law bounded; blue dashed curved line), and ExpB (exponential bounded; red dashed
curved line, mostly overlapping with Exp). Fig. A1 (in the Appendix) shows the same plots on linear axes to show the data and
model fits without the distortion from the logarithmic axes. Table 1 gives definitions of movement length and corresponding units,
which differ for each type of data set.
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the value of a means that a significant portion of the

data was not fitted to in the original study (e.g., for the

Peruvian fishing boats, the first bins of the histograms

were excluded when fitting the power law). For most

cases, the gray circles appear as a somewhat smooth

continuation of the curve given by the black circles. This

is extremely evident in the Appendix: Fig. A1.

Thus, results in Table 3 give the objective evidence for

which model is best supported for each data set, and Fig.

2 gives graphical agreement of those results. For

example, for the Dutch boats in May 2001, Fig. 2d

implies that the exponential models (red curves) are

most suitable for this data set, as confirmed by the

evidence ratios in Table 3.

Microzooplankton data are shown in the Appendix:

Fig. A2 (in the LBN form as originally analyzed),

together with the curves that represent the maximum

likelihood Exp models (using methods described in the

Appendix). For Fig. A2b–d, the Exp model is the model

that has the most support (although it is not a suitable

model as determined by the P values). Even though the

fitted PL lines in Fig. A2 might appear suitable, with

FIG. 2. Continued.
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respective r2 values of 0.98, 0.96, 0.94, and 0.96

(Bartumeus et al. 2003), the originally determined values

of l are quite different than the more accurate MLE

values (Table 2). For Fig. A2b–d, the Exp model is far

more supported by the data than the PL (or PLB) model

(Table 3), so a power-law model is not suitable. This

further demonstrates how regression-based and binning-

based methods of testing for power laws can be

misleading (see also Edwards 2008, White et al. 2008).

CONCLUSIONS

I have reanalyzed 17 published data sets that

previously had been concluded to show evidence for

Lévy flight movement patterns. This conclusion is

overturned for all 17 data sets. The l values computed

using the accurate likelihood approach are different

than those previously inferred from regression-based

approaches, further demonstrating the inadequacy of

such approaches.

The only data set for which a power-law model was

suitable (albeit the bounded power law, not the

conventional unbounded power law), was for gray seal

6124; and for the hunter-gatherers the bounded power

law cannot be ruled out. For all other data sets, either

the bounded power law was the most supported of the

four tested but the data were not consistent with it, or an

exponential model was the best model. Thus, these

results overturn the previous conclusions that all of

these data sets represent evidence of Lévy flight

movement patterns.

The value of a was fixed to that assumed in each

original study, as the aim was to test the explicit power-

law distribution that had previously been concluded.

Testing alternative values of a could be done, involving a

decision on where the ‘‘tail’’ of the data starts. Yet this

then raises the wider question of how useful it is to fit

just the tail of the data, rather than the full range.

Fitting just the tail is justifiable to test the pure Lévy

flight hypothesis of the PL model, but the lack of

support for the PL model here is presumably due to the

lack of truly heavy-tailed data. If the distribution of

movement lengths was desired as input to a movement

model to, say, assess likely consequences of a change in

habitat, then just knowing the distribution of data only

in the tail would not be very useful. Throwing out a

substantial portion of the data (e.g., Appendix: Fig.

A1a) does not seem to be a useful approach. A

compounding problem is that different values of a were

generally assumed for different individuals of the same

type (Fig. 2; Appendix: Fig. A1 and Table A2).

Of the 17 data sets analyzed, for only five did I find

the data to be consistent with one of the four tested

distributions (using the criteria of P . 0.05). For the

remaining 12 cases, could the best of the four models

still be useful for characterizing the patterns? Given that

the goodness-of-fit results were generally so unfavorable,

this seems unlikely (in particular, for the seven out of the

remaining 12 data sets for which the PLB model was

most supported, the P values are 0, 0, 10�8, 0.016, 10�10,

10�5, and 0.0081). This rejection of the best of the tested

models may be because animals move for a variety of

reasons (although the Lévy flight hypothesis relates to

foraging only), so other distributions could be more

appropriate to capture more of the complexity. Some of

the plotted data (e.g., Fig. 2a–c) demonstrate kinks in

the curves, suggesting breaks in the distributions.

Consequently, slightly more complex models may be

required to adequately model such data (e.g., separate

distributions for the short and long movements).

There do remain published examples of Lévy flight

search patterns that were not reanalyzed here, e.g.,

spider monkeys Ateles geoffroyi (Ramos-Fernández et

al. 2004) and honey bees Apis mellifera (Reynolds et al.

2009). Spider monkey data were not available for this

study, although the inaccurate LT method was used in

the original analysis. And Reynolds et al. (2009) did test

the gamma distribution as an alternative to the power

law, but did not shift it to start from the value of a (see

Edwards et al. 2007: Eq. 2). It was therefore unfairly

compared to the power-law distribution that was shifted

to start from a ¼ 15 m (so the gamma distribution was

trying to fit nonexistent data ,15 m).

An often overlooked element of Lévy flight theory is

that of the requirement of random angles between

movements (though see Reynolds and Rhodes 2009).

This is required to fulfill the assumption of a simple

random walk inherent in the definition of a Lévy flight.

The original Wandering Albatross (Diomedea exulans)

data did not have directional information, but the

simulated paths in Viswanathan et al. (1996: Fig. 4) did

incorporate the required assumption of random angles.

Because directional persistence (having a preferred

direction of travel rather than angles being random

uniform variables) also gives superdiffusion, and would

seem to be a more realistic assumption than random

angles for foraging animals, the general lack of data or

discussion concerning angles would seem to further

undermine the idea of Lévy flights as common

movement patterns. Other issues include misidentifica-

tion of movement paths due to discrete data collection

processes (Plank and Codling 2009), inferring a process

from a pattern (Benhamou 2007), and neglecting that

animals use their intelligence and experience to guide

them, factors not included in simple random search

models (see Travis 2007). Such issues strengthen the

conclusion from the results presented here that many

foraging animals and fishermen do not, in fact, move

using a Lévy flight strategy. Therefore, Lévy flights do

not appear to have potential application as marine

ecosystem indicators.
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for supplying raw data from their original studies and for useful
discussions; to Chris Rhodes for helpful discussions regarding
the jackal study and telling me about a thesis where I could

ANDREW M. EDWARDS1256 Ecology, Vol. 92, No. 6



track down some data; to Clifford Brown and Larry Liebovitch
for helpfully including the raw data in their paper and for
interesting discussions; and to Renato Guevara-Carrasco, Jan-
Jaap Poos, and Floor Quirijns for originally collecting fishing
boat data. I also acknowledge the referees for insightful and
useful comments.

LITERATURE CITED

Atkinson, R. P. D. 1997. The ecology of the side-striped jackal
(Canis adustus Sundevall), a vector of rabies in Zimbabwe.
Ph.D. thesis. University of Oxford, Oxford, UK.

Atkinson, R. P. D., C. J. Rhodes, D. W. Macdonald, and R. M.
Anderson. 2002. Scale-free dynamics in the movement
patterns of jackals. Oikos 98:134–140.

Austin, D., W. D. Bowen, and J. I. McMillan. 2004.
Intraspecific variation in movement patterns: modeling
individual behaviour in a large marine predator. Oikos
105:15–30.

Bartumeus, F., F. Peters, S. Pueyo, C. Marrasé, and J. Catalan.
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APPENDIX

Likelihood function derivations and further details regarding statistical tests, microzooplankton data, and hunter-gatherer data
(Ecological Archives E092-104-A1).
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