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Abstract: There is an urgent need for indicators that anticipate changes in populations of exploited marine species. We
modelled the complex patterns of variability found in fisheries time series that are not detected using classical models. We
applied fractal analyses to detect time-invariant scaling symmetries in daily catch time series from the smooth pink shrimp
(Pandalus jordani) fishery from the west coast of Vancouver Island, British Columbia, Canada. A universal multifractal
model, which accounts for intermittent fluctuations and extreme values in a time series, provided a better fit to daily catches
than a monofractal model. Multifractality is an indication of multiple scaling patterns and suggests that more than one proc-
ess is affecting the variability of catches. Fractal dynamics in catch time series were found for a range of scales between 16
and 120 fishing days. To our knowledge, this is the first time that multifractality has been demonstrated for an invertebrate
fishery. The multifractal model has the potential to provide an in-season estimate (up to 120 fishing days) of the variability
of shrimp catches based on the variability at time scales less than 1 month. Changes in these fractal patterns may provide
an early warning that conditions underlying this fishery are changing.

Résumé : Il existe un besoin urgent d’indicateurs qui puissent anticiper les changements démographiques des espèces mari-
nes exploitées. Nous avons modélisé les patrons complexes de variabilité trouvés dans les séries chronologiques des pêches
qui ne sont pas décelés par les modèles classiques. Des analyses fractales nous ont servi à détecter des symétries d’échelle
invariables dans le temps dans les séries chronologiques de prises journalières dans la pêche à la crevette océanique (Panda-
lus jordani) sur la côte ouest de l’île de Vancouver, Colombie-Britannique, Canada. Un modèle multifractal universel, qui
tient compte des fluctuations intermittentes et des valeurs extrêmes dans la série chronologique, fournit un meilleur ajuste-
ment aux prises journalières qu’un modèle monofractal. La multifractalité est une indication de la présence de patrons de ca-
drage multiples et laisse croire qu’il y a plus qu’un processus qui affecte la variabilité des prises. Nous avons trouvé une
dynamique fractale dans les séries chronologiques de prises sur une gamme d’échelles allant de 16 à 120 jours de pêche. À
notre connaissance, c’est la première fois que l’on démontre l’existence de multifractalité dans un pêche d’invertébrés. Le
modèle multifractal a le potentiel de fournir au cours de la saison (de jusqu’à 120 jours de pêche) des estimations de la va-
riabilité des prises de crevettes basées sur la variabilité à des échelles temporelles de moins d’un mois. Les changements
dans ces patrons fractals peuvent fournir un système d’alerte indiquant que les conditions sous-jacentes à cette pêche sont
en train de changer.

[Traduit par la Rédaction]

Introduction

Fractal theory has been used in aquatic sciences to quan-
tify scale-invariant relationships under the form of scaling or
power laws (Seuront 2010). These scaling laws represent pat-
terns that help to understand the complex structure and or-
ganization of marine ecosystems and their populations
through space or time (Pascual et al. 1995; Schmid 2000).

Under this framework, scale-invariant patterns are detected
in a time series by quantifying the dependence between ob-
servations and integrating many different temporal scales
into a single model. This approach has been proven to be
useful in the identification and modelling of ecological and
environmental processes that affect the temporal variability
of marine planktonic populations (Lovejoy et al. 2001; Fisher
et al. 2004).
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In fisheries research, the most common approximations in
the statistical modelling of time series involve (i) modelling
of short-range correlations using univariate (autoregressive
integrated moving average, ARIMA) and multivariate (trans-
fer function noise, TFN) models (e.g., Downton and Miller
1998; Hanson et al. 2006) and (ii) estimation of short-range
correlations (or calculation of the number of independent ob-
servations) (e.g., Pyper and Peterman 1998; Perry et al.
2000). The first approach can detect memory patterns at
short time scales and can use those patterns to forecast future
values, whereas the second approach is often used to adjust
the degrees of freedom after conducting classical linear re-
gression and correlation analyses. Both approximations are
designed to detect the correlation or dependence between ob-
servations that are closely located to each other (i.e., short-
range correlations), ignoring the possible dependence that
could exist between distant observations (i.e., long-range cor-
relations). Long-range correlations have been detected in
fisheries time series (e.g., Halley and Stergiou 2005), but the
high variability (intermittency) and nonlinearity usually
found in marine catch time series have not been taken into
account. These complex dynamics can be quantified in fish-
eries time series using a framework of long-range correla-
tions developed for studies of turbulence and applied to
plankton research (e.g., Seuront et al. 1999; Seuront and La-
gadeuc 2001).
Many attempts have been made to detect and model long-

range correlations in the field of marine ecology, such as in
characterizing the spatial distribution of exploited and non-
exploited marine populations and communities (e.g., Azov-
sky et al. 2000; Guichard et al. 2003). Fractals have been
used extensively to model long-range correlations and the in-
termittent dynamics of marine planktonic and oceanographic
time series (e.g., Seuront et al. 1999; Lovejoy et al. 2001;
Fisher et al. 2004). However, despite the ability of fractals to
integrate multiple time scales of observation in a given
model, few examples of their use in modelling marine ex-
ploited populations in the time domain can be found in the
fisheries literature. Two of these examples are the studies by
Halley and Stergiou (2005) and Niwa (2007), who focused
on analyzing the dynamics of annual patterns in fishery land-
ings and marine population growth rates, respectively. In a
similar way, Niwa (2006) reported long-range correlations in
annual recruitment time series of fish populations from the
North Atlantic. Since these studies were published, better
methods for estimating the degree of long-range correlations
for time series on the order of 100 data points (Chamoli et al.
2007) and shorter (e.g., 64 data points, Delignieres et al.
2006) have become available. In addition, methods are now
available to estimate how far the effect of long-range correla-
tions are detectable (i.e., extension of scaling ranges; Seuront
et al. 2004) quantitatively rather than visually as has been
done in previous examples from the fisheries literature.
In the present study, we analyzed the dynamics of fisheries

catch time series using a finer scale of temporal resolution
(daily) than previous fisheries studies, testing for the exis-
tence of multiple scaling patterns (multifractality). We use
data on daily catches from the commercial smooth pink
shrimp (Pandalus jordani) fishery off the west coast of Van-
couver Island, British Columbia, Canada, for the period
1994–1996. These data can be considered as long (N = 642)

because the daily resolution allows for the analysis of intra-
annual scales of variability.
Our first objective was to demonstrate the existence of

fractal properties in daily fisheries catch time series. Our sec-
ond objective focused on comparing the monofractal model
with the more complex multifractal model regarding their
abilities to detect and quantify long-range correlations and
high variability. A multifractal model was incorporated into
our analysis because it allows the detection of nonlinear and
intermittent fluctuations usually found in fisheries time ser-
ies, in addition to the detection of long-range correlations.
Our data come from the commercial smooth pink shrimp
fishery off the west coast of Vancouver Island, British Co-
lumbia. This fishery was generally open year-round up to
1997 with no quotas from the late 1980s to 1997. The fish-
ery was conducted by small vessels using otter and beam
trawls, with footrope lengths between 9 and 27 m and verti-
cal openings greater than 1.5 m (Perry et al. 2000; Ruther-
ford et al. 2004). Pandalus jordani is a protandric
hermaphrodite species that generally lives up to 3 years,
rarely up to 4 years. This means that they spawn first as
males and then change their sex to females around 2 years
of age (Butler 1980). Spawning occurs during the fall–winter
period, and the eggs hatch during the spring (Butler 1980).
Individuals fully recruit to the fishery at the age of 2 years
(Boutillier et al. 1997).
We start with a basic introduction to fractals and long-

memory processes and then analyze the pink shrimp trawl
fishery data for the presence of these long-range correlations
and intermittent dynamics. We conclude by discussing some
hypotheses that may explain the observed patterns of varia-
bility. We also discuss the potential for this approach to be
used to assist with the management of this fishery and to de-
velop early warning indicators of changes in the underlying
environmental or human processes within which this fishery
operates.

Materials and methods

Fractals and long-memory processes
A fractal can be defined as an object that lacks a character-

istic length because the same geometrical structures are
present at all length scales. If the observational scale is re-
duced, new structures arise, and the new ones are similar to
those of the original unit. As a consequence, fractals are
composed of subunits (and further subunits) that resemble
the larger scale structure, a property known as self-similarity
(Mandelbrot 1983; Goldberger et al. 2002). Self-similar proc-
esses are invariant in distribution under scaling of space
and (or) time, and the scaling coefficient (or index of self-
similarity) is a positive number denoted H (the Hurst coeffi-
cient; Samorodnitsky and Taqqu 1994). Here, 0 < H ≤ 1.
Because of this property, the shape of fractals is nonrectifi-
able, meaning that they consist of an infinite sequence of
clusters within clusters or waves within waves. In rectifiable
objects, increasingly accurate measurements based upon suc-
cessively smaller scales converge to a limit that is the true
extent (length) of the object (Mandelbrot 1983). However, in
fractals, the same procedure generates an infinite series ac-
cording to a power law:
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ð1Þ lðrÞ ¼ kr1�D

where l is the length of the object measured at the scale unit
r (the length of the object diverges as r → 0), k is a constant,
and D is the fractal dimension (the definitions of all variables
are summarized in Table 1). D exceeds the topological di-
mension (d) of an object and is not an integer and satisfies
d < D < d + 1, where d + 1 is the space dimension of the
object. For example, for a fractal time series, 1 < D < 2, and
D = 2 – H.
Fractal (or scale-invariant) processes have no characteristic

scale, which means that all scales contribute to the observed
dynamics. This property is referred as a scaling law or scal-
ing behavior (Abry et al. 2009). Fractal processes generate ir-
regular fluctuations on multiple time scales, analogous to
fractal objects that have a wrinkle structure on different
length scales (Mandelbrot 1983). In an idealized model,
scale-invariance holds on all scales, but the real world im-
poses upper and lower bounds over which such behavior ap-
plies (Goldberger et al. 2002).
In contrast with monofractals, which are homogeneous in

the sense that they have the same scaling properties charac-
terized by only one exponent or coefficient (i.e., H) through-
out the entire signal, multifractals are a class of signals that
requires a large number of indices to characterize their scal-
ing properties. Multifractal signals are intrinsically more
complex and inhomogeneous than monofractals (i.e., differ-
ent parts of the signal may have different scaling properties;
Goldberger et al. 2002). Monofractal analysis looks at the ge-
ometry of a pattern, whereas multifractal analysis looks at the
arrangements of quantities. A monofractal can be defined as
a geometrical set of points and a multifractal is defined as a
mathematical measure (Lavallée et al. 1993). The multifractal
approach implies that a statistically self-similar measure can
be represented as a combination of interwoven monofractal
sets with corresponding scaling exponents. A combination of
all the monofractal sets produces a multifractal spectrum that
characterizes variability and heterogeneity of the analyzed
variable (Kravchenko et al. 1999). In this study, to determine
whether a monofractal or a multifractal model better de-
scribes pink shrimp daily catches, we used an objective stat-
istical procedure that has not been applied previously in this
context.
One means of capturing long-range correlations or long-

memory features of fractal time series is with self-similar sto-
chastic processes, also known as stochastic fractals (Mandel-
brot 1983; Samorodnitsky and Taqqu 1994). A long-memory
process has an autocovariance function with a decay rate
much slower than the decay rate characteristic of a standard
stationary autoregressive process (Percival et al. 2001). In
other words, the observations separated by long time inter-
vals still exhibit a nonzero covariance (current observations
retain some “memory” of distant past observations). Self-
similar models have been studied for more than three decades
and have been successfully applied in a variety of fields in
the form of fractional Gaussian noise (fGn) and fractional
Brownian motion (fBm) (e.g., Mandelbrot and Van Ness
1968; Rodriguez-Iturbe and Rinaldo 2001). For self-similar
time series, the Hurst coefficient (H) is a measure of long-
range dependence. When H > 0.5, all the observations of a
time series are positively correlated, and the closer H is to 1

the smoother the function. When H < 0.5, all observations
are negatively correlated. A time series having the character-
istics of Gaussian white noise corresponds to an fGn series
with H = 0.5 (Samorodnitsky and Taqqu 1994). fGn corre-
sponds to a stationary process with constant mean and var-
iance, whereas fBm is nonstationary with stationary
increments (Mandelbrot and Van Ness 1968). Differencing
fBm creates fGn, and cumulatively summing fGn produces
fBm. Both processes are characterized by the same Hurst co-
efficient but display different dynamics.

Pink shrimp fishery and total daily catches
Smooth pink shrimp are captured by the trawl fishery with

six other species of shrimp, and up to 1996, the majority of
the catch was a mix of smooth pink shrimp (greater than
90%) and sidestripe shrimp (Pandalopsis dispar) (Rutherford
et al. 2004). Individual trawls (mass of shrimp in kilograms
for each trawl) for P. jordani were obtained from Fisheries
and Oceans Canada. This time series takes into account otter
and beam trawls and is from offshore Pacific Fisheries Man-
agement Areas (PFMA) 121, 123, 124, and 125 (Fig. 1).
Catch data were recorded by fishermen in harvest logbooks
at the time of fishing.
A total daily catch (TDC: the daily sum of recorded

catches) time series was constructed for the west coast Van-
couver Island smooth pink shrimp fishery for the 1994–1996
period. Only individual trawls registered during the principal
spring–summer fishing season (April–October; Perry et al.
2000) were used, giving 214 days each year. No major fish-
ing activity was recorded during the November–March period
of each year. In consequence, sporadic days with trawling ac-
tivity during this latter period were not considered as fishing
days and were not included in this study. Total daily catches
for the three years were “stitched” together to yield a total of
642 fishing days (Fig. 2); the consequences of the stitching
will be discussed later. This time series corresponds to the
longest period of total daily catches from the main fishing
season for which the smallest number of days with no obser-
vations occurred (24 “missing” observations, equivalent to
3.7% of the total). Missing observations were estimated by
linear interpolation using one point on either side of the
missing value. Interpolations can add correlations to time
lags less than 30 data points for time series with 10% of
missing data filled by linear interpolations (Wilson et al.
2003). In our case, as the percentage of missing observations
is less than 5%, we expect to find the effect of spurious cor-
relations (if any are present) at scales significantly less than
1 month.
The pink shrimp TDC time series presented a marked pe-

riodicity and a slight increasing linear trend (Fig. 2). Its pe-
riodogram (not shown) has a strong peak at a frequency
(0.0047 fishing days–1) equivalent to the period of one fish-
ing season (214 fishing days). This corresponds to an annual
cycle (summer to summer) owing to the stitching together of
the 3 years of data. Periodicities are considered as determin-
istic trends that can obscure the detection of scaling behav-
iour, and as such they must be removed before the
estimation of long-memory parameters (Montanari et al.
1999). First, the linear trend of the TDC time series was re-
moved by a least squares fit (R2 = 0.04, p < 0.01). The sea-
sonal period corresponding to the annual cycle (frequency
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equal to 0.0047 fishing days–1) and its first harmonic (fre-
quency equal to 0.0093 fishing days–1), which in total ex-
plained 25% of the time series variance, were identified in
the resulting TDC linearly detrended time series by fitting a
Fourier series using the following equation:

ð2Þ ui ¼ a0 þ
Xm
j¼1

aj cos
2pi

j

� �
þ bj sin

2pi

j

� �

where

aj ¼ bj ¼ 2

N

XN
i¼1

ui cos
2pij

N

� �

Here, cos(2pi/j) and sin(2pi/j) are used, for a fixed fre-
quency, as predictor variables to fit the intercept a0 and the
amplitudes aj and bj from the data ui using an ordinary least
squares regression method (Cryer and Chan 2008). The time
series of residuals obtained after the elimination of determin-
istic trends is hereafter called the TDC residual time series
(TDCr). A step-by-step diagram showing all transformations
conducted on the pink shrimp TDC time series is provided
(Fig. 3). The above linear detrending procedure and the re-
moval of seasonal components are Step 1.
For Step 2, nonstationary segments in the TDCr time ser-

ies were removed as they tend to give a biased estimate of H
near 1 (Yu et al. 2003). After that, the mean of TDCr was
subtracted from the individual values, and the cumulative
sum (partial summation) of the obtained values was calcu-
lated (e.g., Gao et al. 2006). The series obtained after this op-
eration is hereafter called the TDC anomaly time series
(TDCa). The TDCa time series is free of periodicities and is
nonstationary, as is required to estimate the multifractal pa-
rameters.

Monofractal and multifractal analysis
Scaling dynamics and stationarity were tested using power

spectrum analysis (Davis et al. 1994; Rodriguez-Iturbe and
Rinaldo 2001). If scaling is present in pink shrimp catches,
the characteristic power-law form of fractals will appear as

ð3Þ EðwÞ � w�b

where w is frequency, E(w) is the power of the TDCa time
series (squared modulus of the fast Fourier transform; Davis
et al. 1996), and b an exponent to be estimated. On a loga-
rithmic scale, scaling dynamics will manifest as an approxi-
mately linear curve when plotting E(w) versus w. Power
spectrum analysis is equivalent to an analysis of variance in
which the total variance (statistical moment q = 2) is parti-
tioned into contributions coming from processes with differ-

Table 1. Definitions of variables and parameters used in the text.

Symbol Definition
H Hurst coefficient
C1 Intermittency parameter
a Lévy index
l Length of a fractal object
r Time lag or scale unit (fishing days)
k Constant of power law equation
D Fractal dimension
d Topological dimension (d = 1 for time series)
ui Total daily catch observations of the linearly detrended time series
a0; aj, bj Intercept and amplitudes of Fourier series
j Fourier index
i Daily values index
E(w) Spectral power
w Frequency
q Statistical moment
b Power spectrum slope
xi Value of the TDCa* time series for day i
Yr(q) Structure function empirical observations
Ŷr(q) Structure function fitted values
N Total length of pink shrimp catch time series
z(q) Structure function scaling exponent
H(q) Hierarchy of Hurst coefficients
Κ(q) Scaling moment function
U Theil’s inequality coefficient
r1 Lower scaling limit
r2 Upper scaling limit
R′ Deviance
p1 Number of parameters of monofractal model
p2 Number of parameters of multifractal model
a′ Significance level

*TDCa is the total daily catch anomaly time series obtained after cumulatively summing the TDCr time
series, where TDCr represents the total daily catch residual time series.
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Fig. 1. Fisheries and Oceans Canada Pacific Fishery Management Areas (PFMA). Data for this study came from PFMA 121, 123, 124, and
125 off the west coast of Vancouver Island, British Columbia, Canada.

Fishing days (1 = 1 April, 1994 ; 642 = 31 October, 1996)

0 100 200 300 400 500 600

T
D

C
(1

0
0
0

k
g
)

160

140

120

100

80

60

40

20

0

1994 1995 1996

Fig. 2. Pink shrimp (Pandalus jordani) total daily catch (i.e., daily sum of all recorded catches; TDC) time series from 1994 to 1996 for the
April–October period (642 fishing days) in Pacific Fishery Management Areas 121, 123, 124, and 125, west of Vancouver Island, Canada. A
sinusoidal curve with an annual period of 214 fishing days was fitted to this time series. A slightly increasing linear trend is also visible in
this time series.
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ent time scales giving a quantitative measure of the impor-
tance of each frequency (Seuront et al. 1999). As a conse-
quence, highly intermittent and non-Gaussian time series are
not appropriately quantified using this methodology, which
focuses only on the second-order moment (Seuront and Laga-
deuc 2001).
To completely quantify the scaling dynamics of the TDCa

time series, we analyzed higher statistical moments using a
function of order q (statistical moment) known as a structure
function (Davis et al. 1996; Tennekoon et al. 2005) or gener-
alized variogram (Lavallée et al. 1993; Rodriguez-Iturbe and
Rinaldo 2001). When q = 2, the structure function corre-
sponds to the variogram (Davis et al. 1994). Structure func-
tions are only applicable to nonstationary self-similar time
series (Davis et al. 1994; Yu et al. 2003) (i.e., a time series
for which the slope b obtained from eq. 3 fluctuates between

1 < b < 3). These time series correspond to nonstationary
processes with stationary increments (Davis et al. 1994,
1996). However, if –1 < b < 1, the time series is classified
as strictly stationary, and a transformation to convert it to a
nonstationary process is necessary before using structure
functions (Yu et al. 2003; Gao et al. 2006). These functions
have been used in plankton ecology (e.g., Seuront et al.
1999; Fisher et al. 2004) and were also applied in the analy-
sis of the multifractal temporal dynamics of the southern
hake (Merluccius australis) fishery of Chile (Montes 2004).
The structure function Yr(q), for time lag r and statistical mo-
ment q, is defined as

ð4Þ YrðqÞ ¼ jðxiþrÞ � ðxiÞjq
� �

; r ¼ 1; 2; 3; . . . ;N=4

where N is the length of the TDCa time series, xi is the value
of the TDCa time series for day i, and the operator 〈…〉 cor-

Results

Total daily catch anomaly

time series (TDCa)

3.1) calculation of scaling exponents ( )qζ

3.2) detection of scaling ranges ( and )r r1 2

3.3) estimation of multifractal l parameters ( , , )H C1 α

3.4) comparison between monofractal and multifractal model

Step 3

Total daily catch residual time

series (TDCr)

Step 2

Total daily catch time series
(TDC)

1.1) linear detrending

1.2) estimation of power spectrum index ( )β

1.3) removal of periodic components

Step 1

2.1) checking stationary condition [-1 < < 1 and (1) 0]β ζ ~

2.2) elimination of nonstationary time lag

2.3) demeaning of time series

2.4) taking cumulative sums (integration)

Fig. 3. Diagram showing the transformations and mathematical operations conducted on pink shrimp (Pandalus jordani) total daily catch time
series (TDC) on a step-by-step basis. TDCr represents the total daily catch residual time series, and TDCa is the total daily catch anomaly
time series obtained after cumulatively summing the TDCr time series.
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responds to the mean over i = 1, 2, 3,…,N – r. The time lag
r is equivalent to the scale unit defined in eq. 1 and is mea-
sured using previously defined fishing days. The maximum
time lag r is usually set to N/2 because a greater time lag is
more affected by low sample sizes and also by spurious prop-
erties of the data (Journel and Huijbregts 1978). To be con-
servative, in this study the maximum time lag r was set to
N/4. In the averaging procedure, we considered 482 pairs of
data from the TDC residual time series, which is significantly
more than the 100 data pairs (Tennekoon et al. 2005) or 225
data pairs (Webster and Oliver 1992) considered reliable
when structure functions or their equivalent variograms are
calculated.
The scaling exponents z(q) were estimated by the slope of

the linear regression between Yr(q) and r on a logarithmic
scale for different statistical moments q using the following
equation:

ð5Þ YrðqÞ � rzðqÞ

We considered 40 moments in the structure function calcu-
lations, such that q varies between 0.1 (weakest and most fre-
quent fluctuations) and 4.0 (strongest but sporadic
fluctuations) with an increment of 0.1. We then define a hier-
archy of Hurst coefficients using the z(q) values as

ð6Þ HðqÞ ¼ zðqÞ
q

which is the goal of this method (Davis et al. 1994). Those
processes with constant Η(q), characterized by simple scal-
ing, are known as monofractals (or simple fractals). Processes
with nonlinear and convex (downward facing) z(q) are called
multifractals (Seuront et al. 1999; Tennekoon et al. 2005).
For monofractals, z(q) is linear (e.g., z(q) = q/2 for Brownian
motion). In particular, the first moment (q = 1) gives the
scaling exponent H = z(1), corresponding to the scale depen-
dency of the average fluctuations. If H ≠ 0, the fluctuations
Yr(q) will depend on the time scale, which characterizes the
degree of stationarity of the process (Seuront and Lagadeuc
2001). No scaling is present for a strictly stationary process
z(q) ∼ 0, and therefore structure functions are also used to
detect stationary (and nonstationary) segments in a time ser-
ies before the estimation of multifractal parameters (Yu et al.
2003).
We used the Universal Multifractal Model (Schertzer and

Lovejoy 1987; Lovejoy et al. 2001) to characterize and quan-
tify the dynamics of a multifractal process. In using this
model we avoided estimating a large number of exponents,
z(q), to completely characterize the dynamics of the pink
shrimp catch time series. Under this framework, the multi-
scaling behavior of an intermittent process can be quantified
using a scaling moment function K(q), which depends only
on two parameters, C1 and a, estimated through

ð7Þ KðqÞ ¼
C1

a� 1
ðqa � qÞ; a 6¼ 1

C1 q log ðqÞ; a ¼ 1

8<
:

The intermittency parameter C1 characterizes the hetero-
geneity of the process; when this parameter increases, the
magnitude of sudden large jumps increases (Seuront and La-

gadeuc 2001). It is also known as the codimension (i.e., the
fractal dimension is d – C1; d = 1 for time series). A value of
C1 near 0 indicates a process (in this case, a time series) hav-
ing near-average observations at all times (homogenous),
whereas a value of C1 near 1 corresponds to a process that
usually has very small observations except on rare and distant
occasions when an observation significantly exceeds the aver-
age (i.e., heterogeneous or sparse) (Seuront and Lagadeuc
2001). It goes beyond the standard concept of asymmetry
known as skewness (which only looks at the third statistical
moment) and has a long-term memory signature (Seuront
2010). The parameter a, also known as the Lévy index,
measures the degree of multifractality and determines the
shape of the probability distribution; it satisfies 0 < a ≤ 2
(Seuront et al. 1999). As a decreases, the frequency of sud-
den large jumps increases.
For a multifractal, the departure from the simple linear be-

haviour can be quantified by extending eq. 7 to include the
scaling function K(q) as

ð8Þ zðqÞ ¼ qHðqÞ � KðqÞ
where H(1) = z(1) is the Hurst exponent for the monofractal
case. For monofractals (i.e., when C1 = 0 or a = 0), z(q) is a
linear function of q. In the present study, H, C1, and a were
estimated in Step 3 by the nonlinear regression of eq. 7 (e.g.,
Seuront et al. 2002; Tennekoon et al. 2005).

Estimation of confidence intervals
We used a nonparametric bootstrap procedure in which the

residuals obtained from the fit of the nonlinear regression to
the Universal Multifractal Model (eq. 8) were randomized
(e.g., Crawley 2007). The 95% confidence intervals (Efron
and Tibshirani 1993) were estimated using 1000 resamples.
Calculations were performed using R software (version
2.7.2, R Development Core Team 2005).

Detection of scaling ranges
Scaling ranges were detected on Step 3 using three differ-

ent criteria: local slopes, zero slope, and “R2-SSR” (Takalo et
al. 1995; Seuront et al. 2004).
First, we used an automatic adaptive scaling range selec-

tion algorithm (Xia et al. 2005), which finds the linear region
of a curve by comparing how closely a linear regression
model characterizes the observed data points. It uses an inde-
pendent measure of goodness of fit known as Theil’s inequal-
ity coefficient, U (Theil 1972), which is calculated as

ð9Þ U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N�
XN�

r¼1
ðbY r � YrÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N�

XN�
r¼1

ðbY rÞ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N�

XN�
r¼1

ðYrÞ2
q

where Ŷr are the values fitted by the linear model, Yr corre-
spond to the structure function values, and N* is the sample
size for U equivalent to N/4. The observed time scale or time
lag r was measured with increments of 1 fishing day. The de-
nominator of eq. 9 is used to normalize U between 0 and 1.
As U approaches zero, the fitted data points get closer to the
observed data. To determine scaling breaks, we used a
threshold value of U equal to 0.015 as estimated between
two time scales r1 and r2 (Xia et al. 2005). The initial starting
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point for the algorithm was set as the middle region of the
curve (i.e., r1 = (N*/2) – 1 and r2 = (N*/2) + 1).
Second, to check the consistency of the scaling range se-

lected with the Xia et al. (2005) algorithm, local slopes of Yr
were calculated between adjacent data points and plotted as a
function of time lag r on a logarithmic scale. If the time ser-
ies is self-similar, local slopes should be approximately con-
stant for some time period (Takalo et al. 1995), which is
equivalent to the so called “zero-slope” criterion used by
Seuront et al. (2004). This criterion was designed to detect a
difference between the slope of a regression line and a theo-
retically expected slope of zero using a t test (Zar 1999). Fi-
nally we applied the “R2-SSR” criterion (Seuront et al. 2004),
which determines the scaling range maximizing the coeffi-
cient of determination (R2) and minimizing the total sum of
squared residuals (SSR) of the regression line.

Selection between monofractal and multifractal models
To determine whether structure function observations cal-

culated using eq. 4 are better fitted by a monofractal than a
multifractal model, or vice versa, visual detection is generally
used. This is done by visually comparing the fits of the theo-
retically fitted monofractal curve (straight line) and the fitted
multifractal curve (dome shaped curve) with the observations.
However, we used the likelihood ratio test for nested models
(Burnham and Anderson 2002) to select the model that best
describes the structure function observations. By setting C1 =
0 or a = 0 in eq. 8 for the multifractal model, we obtained
the monofractal model z(q) = qH, denoted as M1, which is a
nested model of the multifractal model M2. Assuming normal
errors with constant variance, the statistic R′ (Hilborn and
Mangel 1997), which represents twice the difference in nega-

tive log-likelihoods given the data, also called the deviance,
was calculated as

ð10Þ R0 ¼ 2½logLðM2jdataÞ � logLðM1jdataÞ�
where L(Mk | data) is the likelihood of model k. R′ has a c2

distribution with p2 – p1 degrees of freedom, where p1 and
p2 are the number of parameters of M1 and M2, respectively;
here, p2 – p1 = 2. If R′ is greater than c2 at the a′ = 0.05
level, then the multifractal model is significantly better than
the monofractal model at this level.

Results

Scaling of TDC and stationarity of TDCr time series
A preliminary indication of scaling over multiple ranges

was obtained by fitting a straight line through the power
spectrum plot of the linearly detrended TDC time series
(Fig. 4). However, there was significant variability in this
plot, especially at both ends of the spectrum, which means
that it was not possible to detect clear scaling breaks that
can be used to estimate monofractal parameters. This power
spectrum analysis is only used here as a preliminary assess-
ment of scaling in the TDC time series (Step 1, Fig. 3) and
to classify the TDCr time series as stationary or nonstation-
ary (Step 2, Fig. 3).
The slope (–b) obtained from the power spectrum analysis

(eq. 3) is equal to –0.37, which means that the TDCr time
series corresponds to a stationary process (Davis et al.
1994). A more detailed analysis using structure functions re-
vealed the existence of two increasing trends in TDCr time
series: the first between 1 and 3 fishing days and the second
between 4 and 15 fishing days (Fig. 5). These scaling breaks
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Fig. 4. Power spectrum of the pink shrimp (Pandalus jordani) total daily catch time series (TDC) off the west coast of Vancouver Island for
1994–1996. The fitted straight line is a preliminary indication of scaling.
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are in agreement with those observed in the power spectrum
plot of the TDC time series at the same time lags (Fig. 4).
Therefore, the nonstationary segment over the range from 1
to 15 fishing days was excluded before the estimation of
multifractal parameters (Step 2 of Fig. 3). This latter proce-
dure avoids a biased estimation of the Hurst coefficient be-
cause of the spurious effects of trends on the self-similar
properties of total daily catches. This means that 16 fishing
days was selected as the lower limit before the detection of
scaling ranges. For the TDCr time series, we obtained a
value of H = z(1) = 0.05, after excluding the initial nonsta-
tionary segment, which confirms (i) that TDCr is close to a
strict stationary process for which H = z(1) = 0 and (ii) the
need to take cumulative sums of (integrate) the TDCr time
series before calculating the structure functions. As explained
in the Methods section, taking cumulative sums is necessary
when a time series is analyzed as a random walk and H =
z(1) is close to zero (Gao et al. 2006). The integrated TDCr
time series forms the total daily catch anomaly time series
(TDCa), and the latter is used hereafter in the calculation of
scaling ranges and in the estimation of multifractal parame-
ters.

Selection of scaling ranges
Xia et al.’s (2005) adaptive search algorithm applied to de-

tect the linear region of the curve using structure function
values Yr(q) for q = 1 selected a scaling range of 16 to 120
fishing days (Fig. 6). The value of Theil’s inequality coeffi-
cient U obtained from eq. 8 for the selected scaling range
was 0.0001, which is far below the threshold value of U =
0.015. A value of R2 = 0.99 (p < 0.01) confirmed the good
fit of the linear regression model for this scaling range. Ac-
cording to the second criterion for detecting scaling ranges,

local slopes were plotted against the time lag and a zero
slope was obtained for several regression lines. These lines
have a fixed lower scaling limit of 16 fishing days and an
upper scaling limit that varied between 116 and 129 fishing
days. After approximately 120 fishing days, local slopes gen-
erally decreased, showing the absence of a scaling region
after that time lag (Fig. 7).
The response of structure functions to the presence of peri-

odic oscillations is well known. In these cases, structure
functions reach their maximum values at half of their period
and their minimum values at the time scale of their period
(Takalo et al. 1995; Yu et al. 2003). After stitching together
the data points of the total daily catch time series from the
main fishing seasons from 1994 to 1996, a period equal to
214 fishing days was artificially created. The structure func-
tion for the TDCr time series reaches a value near its maxi-
mum at 214 fishing days, which demonstrates that the main
seasonal period of 214 fishing days was efficiently removed
and has no effect on the structure function plot. Using the
“R2-SSR” criterion and a lower scaling limit of 16 fishing
days, we obtained a maximum coefficient of determination
(R2 = 0.9978) and a minimum sum of squared residuals
(SSR = 0.0475) for a regression line with zero slope (t =
0.621, p < 0.01) at a time lag equal to 120 fishing days. In
conclusion, lower and upper scaling limits of 16 and 120
fishing days were used to estimate monofractal and multifrac-
tal parameters.

Estimation of monofractal and multifractal parameters
and selection of models
Structure functions for the TDCa time series exhibit linear

trends over the selected scaling range (16 to 120 fishing days
according to Xia et al.’s (2005) algorithm) for all statistical
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Fig. 5. Structure function Yr(q) versus r in a log–log plot obtained from the pink shrimp (Pandalus jordani) total daily catch residual time
series (TDCr) for the west coast of Vancouver Island from 1994 to 1996. Two increasing trends, the first between 1 and 3 fishing days and
the second between 4 and 15 fishing days, are visible.
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moments. For clarity, only four moments (q = 1, 2, 3, 4)
from a total of 40 are shown (Fig. 8). The value estimated
for H was 0.8779 (95% confidence interval (CI): 0.8777,
0.8783). This value can also be obtained using eq. 6 for
which H = z(1) = 0.8778, which is very close to the value

from the nonlinear regression model. The empirical structure
function calculated using the exponents z(q) for q between
0.1 and 4.0 is nonlinear, which means that the TDCa time
series is multifractal over the selected scaling ranges
(Fig. 9). The empirical and theoretical multifractal curves
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Fig. 6. Scaling range (between 16 and 120 fishing days) selected by the adaptive search algorithm (Xia et al. 2005) applied to detect the
linear region of the structure function curve of the total daily catch anomaly time series (TDCa) for q = 1. Upper scaling limit is marked by
an arrow. Inset shows a close-up view of the departure of the structure function from the linear trend at 120 fishing days.
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Fig. 7. Temporal variability of local slopes calculated for TDC anomaly time series (TDCa) for time lags between 16 and 321 fishing days.
Local slopes fluctuate around a constant value up to approximately 120 fishing days and notably decrease after that.
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also showed good agreement (Fig. 9) when the theoretical
curve was calculated using the estimated universal multifrac-
tal parameters C1 = 0.0429 (95% CI: 0.0425, 0.0435) and

a = 1.5073 (95% CI: 1.493, 1.521). Since the TDCa time
series is multifractal, H = z(1) cannot be interpreted as a
Hurst coefficient because multiple scaling patterns are re-
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Fig. 8. Structure function Yr(q) versus r in a log–log plot obtained from the pink shrimp (Pandalus jordani) total daily catch anomaly time
series (TDCa) for the west coast of Vancouver Island from 1994 to 1996. A linear trend selected by the adaptive search algorithm (Xia et al.
2005) for q = 1 in Fig. 6 is visible also for statistical moments q = 1, 2, 3, 4 for a range of scales from 16 to 120 fishing days marked
between vertical dashed lines.
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Fig. 9. Empirical curve for scaling exponents, z(q), (solid circles) compared with the monofractal curve z(q) = qH (continuous line) and with
the theoretical universal multifractal function (crosses) obtained from the pink shrimp (Pandalus jordani) total daily catch anomaly (TDCa)
time series with H = 0.8779, C1 = 0.0429, and a = 1.5073.
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quired to characterize the dynamics of this time series. This
means that a single coefficient (H) cannot determine the
complete statistical scaling features of the TDCa time series,
and additional parameters (C1 and a) are necessary to explain
the variability. For this case, the Hurst coefficient is esti-
mated using the Lévy index as H = 1/a (Samorodnitsky and
Taqqu 1994), which is equal to 0.66.
The estimated R′ statistic from the likelihood ratio test ob-

tained from eq. 10 was 362; this is much greater than 5.99,
the value calculated at the a′ = 0.05 significance level. This
test clearly selected the multifractal over the monofractal
model, which confirms the good fit of the theoretical multi-
fractal model to the empirical multifractal observations
shown in Fig. 9. However, more observations will be neces-
sary to make multifractal models a useful tool in the forecast-
ing of total daily catches in fisheries research. This is because
the error introduced in using finite length time series for the
estimation of scaling exponents using structure functions is
less than 5% if the minimum number of data points varies
between 1000 and 3000 according to the dynamics of the
time series (Kiyani et al. 2009). This does not mean that the
TDCa time series is not multifractal. This only means that
our estimation of multifractal parameters could have been af-
fected by the limited number of observations available, and in
consequence when using structure functions and a multifrac-
tal model to forecast TDC values, no less than 3000 observa-
tions should be used.

Discussion

Identification of multifractal patterns
To our knowledge, this is the first time that multiscale

temporal patterns of variability (i.e., multifractality) have
been demonstrated for an invertebrate fishery. Previous stud-
ies conducted on invertebrate fisheries found monofractal
spatial patterns (e.g., fractality in the spatial variability of
catch rates and abundance estimates from the northern prawn
fishery in Australia (Wang et al. 1999) and from the krill
fishery in the Southern Ocean (McClatchie et al. 1994)).
Monofractal patterns have also been found in interannual
growth rates and recruitment time series of several fish and
invertebrate stocks (Niwa 2006, 2007). However, these stud-
ies focused only on the estimation of the Hurst parameter to
quantify the long-range correlation structure in these time
series and did not consider the possible existence of multiple
scaling patterns that could produce more complex dynamics.
Our findings support those reported by Montes (2004), who
analyzed the temporal multifractal dynamics of catches and
catch per unit effort from the southern hake fishery in south-
ern Chile. This pattern of self-similar temporal dynamics may
be a widespread feature of fisheries, at least in the eastern Pa-
cific Ocean, and not restricted to specific ecosystems or par-
ticular fisheries.
Our results demonstrate the existence of multifractal dy-

namics in smooth pink shrimp daily catch time series off
Vancouver Island, Canada, with a scaling range of 16–120
fishing days. This scaling range suggests that different proc-
esses affect and structure the availability and (or) catchability
of P. jordani at time scales less than 120 fishing days, com-
pared with longer time scales. As different segments of the
TDCa time series have different scaling properties, the sim-

plest explanation is that low and high catches are regulated
by different mechanisms rather than a single mechanism.
Several mechanisms have been proposed to explain the emer-
gence of fractal-like spectra in the abundance variability of
terrestrial and aquatic populations, including fish stocks, at
an interannual scale. For example, age structure, density de-
pendence, measurement errors, and the interaction between
age structure and stochastic recruitment are factors used to
explain the predominance of low-frequency over high-
frequency variability (e.g., Akçakaya et al. 2003; Bjørnstad
et al. 2004; Halley and Inchausti 2004) that leads to the ap-
pearance of long-range correlations and the characteristic lin-
ear trend given by eq. 3 of the power spectrum plot.
However, according to our results, intraseasonal time scales
of variability play major roles in structuring the scaling dy-
namics in this pink shrimp fishery. The fractal approach rec-
ognizes intermediate scales of variability in this fishery (i.e.,
from weeks to a season) as fundamental in the emergence of
multiple scaling patterns in pink shrimp catches.
Note that only fishing days were analysed over the main

fishing seasons from 1994 to 1996. Since TDCr was demon-
strated to be a stationary time series across these three fish-
ing seasons, the patterns of variability in any one season are
consistent with those in the other seasons, despite the inter-
vening November to March calendar (and nonfishing) days.
As a consequence, the interpretation of the processes under-
lying the 16 to 120 fishing days scaling range apply to the
spring to fall fishing seasons.

Potential applications of fractal models in the pink
shrimp fishery
For a multifractal time series, the scaling symmetry can be

used to predict the probabilities of extreme events at time
scales beyond the longest available or at magnitudes in ex-
cess of those in the current observations (e.g., Finn et al.
2001). In this latter case, the scaling of the time series in-
volves the preliminary estimation of H, a, and C1. For exam-
ple, using the multiple scaling patterns observed for the pink
shrimp total daily catch time series, it is possible to predict
the probability of achieving values two, three, or other multi-
ples of the observed mean for this time series (e.g., Schertzer
et al. 1997; Finn et al. 2001). In terms of its application to
the management of this fishery, such predictions of extreme
variability can be used to assist fisheries managers with ex-
plaining and interpreting occasional very large catches. More
detailed information about the multifractal theory used for the
prediction of extreme events can be found, for example, in
Schertzer et al. (1997) and Finn et al. (2001).
Up until 1997, the pink shrimp fishery along the west

coast of Vancouver Island was managed primarily by sea-
sonal closures. Since 2000, management approaches have in-
cluded preliminary catch ceilings based on preseason
biomass forecasts and the application of predetermined har-
vest rates, followed by reassessment and revision of total al-
lowable catches after completion of fishery-independent
biomass surveys (Rutherford et al. 2004; Fisheries and
Oceans Canada 2011). When the total allowable catch for a
particular area is reached, that area is closed. It is not known
at the start of a season whether or when a particular area may
reach its quota and be closed. The universal multifractal pa-
rameters H, a, and C1 can be used to construct fractal algo-
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rithms (Schertzer et al. 1997) to forecast total daily catch val-
ues at intra-annual time scales. These algorithms take into ac-
count the extreme fluctuations and the scaling symmetry of
multifractal time series and can substantially reduce the fore-
cast errors of individual data points (Richards 2004). In addi-
tion, the multiple scaling patterns for this time series can
potentially provide an in-season estimate of the future varia-
bility of catches using historical data and observations from
the early part of the season. Taken together, these properties
could provide an early season estimate of when the catch
ceiling may be reached in an area and the variability (i.e., un-
certainty) around this date (assuming that the fishery and en-
vironmental conditions proceed as they have in the past).
Traditionally, short-range memory models (ARIMA) have
been used in fisheries research to obtain forecast values of
catches (Ryall et al. 1999; Hanson et al. 2006; Tsitsika et al.
2007) or a long-memory parameter is used to analyze the dy-
namics of catches (García et al. 2010), but these fail to repre-
sent the extreme variability of catches on a daily scale. In
addition, if the observed patterns of variability differ from
the predicted patterns, it may indicate that something has
changed in the underlying processes governing daily catches,
thereby serving as an early warning indicator of these chang-
ing conditions.
By using fractal and multifractal models it is also possible

to detect the degree of association between fisheries and
oceanographic time series in a more formal way than using
classical correlation analyses. This new correlation function
based on multifractal theory has desirable properties: (i) no
assumptions about the probability distribution of each time
series are made, (ii) the range of scales for which a signifi-
cant correlation is found is detected, taking into account the
scaling symmetry of each time series, and is not imposed (as
usually done) prior to the analysis, (iii) the degree of associa-
tion is calculated considering different intensity levels (by us-
ing different statistical moments q) and not only the mean of
each time series (Seuront and Schmitt 2005a). This latter
property can be used to track the evolution of the correlation
between two time series. For example, in a hypothetical fish
population high catches can be positively correlated with
high and intermediate levels of sea surface temperature
(SST), but not be associated at all or negatively correlated
with low values of SST. Detailed examples of this application
in oceanographic research can be found in Seuront and
Schmitt (2005a, 2005b). Preliminary analyses conducted us-
ing much longer time series of catches (N ∼ 2500 observa-
tions) confirm the existence of long-range cross-correlations
between pink shrimp TDC and SST (not shown here).

Hypotheses for the causes of these fractal patterns
Seasonal scaling patterns may arise from biological proc-

esses regulating the abundance and availability of shrimp to
these fishing grounds, from behavioural processes within the
shrimp fishery itself, from management actions, or a combi-
nation of all. Having demonstrated the existence of multifrac-
tal temporal patterns in this fishery, ongoing work is focused
on quantifying the effects of physical factors and manage-
ment actions on the dynamics of catches from a fractal per-
spective. Various hypotheses are being tested and the results
will be presented in forthcoming publications. In the follow-
ing paragraphs we identify some of these hypotheses that

may account for the upper scaling limit and multifractality in
this fishery.
For biological processes, the upper scaling limit (i.e., 120

fishing days) of the TDCa time series may be associated
with the characteristic time scale of seasonal migrations of
important predators of these shrimp. Pacific hake (Merluccius
productus) coastal populations, one of the predators of P. jor-
dani (Buckley and Livingston 1997), undertake a south–north
seasonal migration through the coastal upwelling domain of
the Northeast Pacific for feeding purposes (Beamish et al.
2005). It is not clear how long hake remain in Canadian
waters off the west coast of Vancouver Island but they are
thought to be present between 80 and 180 days during warm
years (Martell 2002). Food web processes relating to the in-
fluence of meanders and eddies on phytoplankton production
with seasonal time scales of 100–200 days (Henson and Tho-
mas 2007) could also influence the abundance and availabil-
ity of pink shrimp to the fishery. These values encompass the
upper scaling limit (120 fishing days) found for this pink
shrimp catch time series, although more evidence is neces-
sary to support these hypotheses.
In regards to processes within the fishery itself, the com-

bined effect of multiple factors like an increase in the abun-
dance of shrimp (Rutherford et al. 2004) and an increase of
fishing effort (Fisheries and Oceans Canada 2001) may ex-
plain the emergence of multifractal scaling patterns. Major
changes in the level of multifractality in time periods with
different fleet-resource dynamics were detected in the south-
ern hake fishery of Chile (Montes 2004). To explore this hy-
pothesis, analyses should be conducted that incorporate, for
example, time periods for which the shrimp population and
fishing effort were more homogeneously distributed com-
pared with those periods when substantial declines in abun-
dance occurred.
Socio-economic factors can have an effect on the selection

of fishing grounds and on the behaviour of a trawl fleet (Wal-
ters and Martell 2004), which can cause short-range correla-
tions. For example, in the case of rose shrimp (Aristeus
antennatus) in the northwest Mediterranean, the better
knowledge of shrimp distributions obtained by the fleet in
the course of the week and higher prices obtained by the
fishermen at the end of each week were proposed to explain
significant short-range autocorrelations in catch rates at a
time lag of 5 days (Sardà and Maynou 1998). In our study,
scaling breaks were detected for pink shrimp total daily catch
time series at 3 fishing days, which may reflect the effect of
fishing location and the duration of the fishing trips. For the
P. jordani fishery off the coast of California, the locations of
fishing on any given day were determined in part by high
catches the previous day (Eales and Wilen 1986). In this lat-
ter study, fishers used this information to choose the same
fishing location until the high density of shrimp was reduced.
In the case of the Pacific hake fishery off the west coast of
North America, fishing persisted at a specific location for 3–
4 days (Dorn 2001). These examples suggest that socio-
economic factors may have an effect on the variability of
catches but restricted to time scales no greater than a week.
For the P. jordani fishery off the west coast of Vancouver

Island, wind stress and tidal speed, among other environmen-
tal factors, can affect the availability of this species on a time
scale of 8–10 days (Perry et al. 2000). This scale is some-
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what shorter than the range obtained in this study (16 to 120
fishing days); however, this does not mean that environmen-
tal variability has no effect on the availability on P. jordani
on longer time scales. In the study conducted by Perry et al.
(2000), using data from 1996, the variability in catch rates of
P. jordani was analyzed up to a maximum of 90 days, and
indeed, low frequency oscillations in catch rates were found
at 30–40 days.
Our ultimate goal is to identify underlying processes that

may be sources of the observed fractal properties, as a guide
to understanding catch fluctuations and to improve the man-
agement of this fishery. These scaling patterns could be used
to construct early warning indicators of change in this, and
possibly other, fisheries. However, fractality needs to be dem-
onstrated for other fisheries operating in the same and other
ecosystems to determine its generality and to be accepted as
an early warning fisheries indicator. Considering the increas-
ing monitoring activities of fisheries operations, including
on-board observers, the fine resolution data necessary to de-
tect and quantify scaling patterns should become more read-
ily available. Here, we have demonstrated the existence of
multiple scaling patterns in pink shrimp catch time series off
the west coast of Vancouver Island, which is the necessary
first step to demonstrate the ubiquity of fractal patterns in
fisheries time series. Having identified such properties in
this study, forthcoming papers will analyze longer time series
of smooth pink shrimp catches, including periods with differ-
ent management actions and abundance levels, to examine
the use of these properties as early indicators of changes in
fisheries.
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ERRATUM / ERRATUM

Erratum: Multifractal patterns in the daily catch
time series of smooth pink shrimp (Pandalus
jordani) from the west coast of Vancouver Island,
Canada

Rodrigo M. Montes, R. Ian Perry, Evgeny A. Pakhomov, Andrew M. Edwards, and
James A. Boutillier

Ref.: Can. J. Fish. Aquat. Sci. 69(2): 398–413 (2012).
For Fig. 5 on page 406, the figure shows “5 fishing days time lag”. This is incorrect. It should read “15 fishing days time

lag”. The correct figure is shown below. The publisher apologizes for any inconvenience this might have caused.
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Fig. 5. Structure function Yr(q) versus r in a log–log plot obtained from the pink shrimp (Pandalus jordani) total daily catch residual time
series (TDCr) for the west coast of Vancouver Island from 1994 to 1996. Two increasing trends, the first between 1 and 3 fishing days and
the second between 4 and 15 fishing days, are visible.
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